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Foreword

This handbook is a collection of articles, grounded in science but equally dedicated 
to practice, on topics carefully chosen by the editors and written by leading authors 
in the field. At the same time, this book is much more than just a collection of arti-
cles. It is the realization of a decades-old vision for the future of a new subject, the 
flowering of seeds planted long ago and cultivated by generations of students and 
scholars.

In the beginning, there was the soil and the seed. The soil was statistics, the sci-
ence of learning from data, not a crop in itself, so much as an environment for rais-
ing a crop, using data to learn about a subject area. The seeds came from the subject 
area, in this case education, wanting to learn how we learn. When the seed found the 
right soil, there sprouted the new science of statistics education, driven by a com-
mitment to teaching statistics well and led in the early years by such statistics text-
books as Snedecor and Cochran (1937), Hoel (1947), Hogg and Craig (1958), and 
Mosteller, Rourke, and Thomas (1961) and, more recently, in a second wave, by 
Freedman, Pisani, and Purvis (1978), Moore (1978), Anscombe (1981), Moore and 
McCabe (1989), and Scheaffer, Watkins, Witmer, and Gnanadesikan (1996). In 
parallel with the second wave, a new academic subject was born: using statistics to 
learn how to teach statistics.

Like farming, teaching is a craft, not an innate talent you either have or don’t 
have, not a green thumb you are born with or without, but something you can learn 
from experience if you pay attention to data. Data from research in statistics 
education can and should guide how those of us who teach statistics can improve 
our craft of teaching statistics well. At the same time, we who teach statistics can 
and should guide those who use data for their study of how students learn. In that 
spirit, the authors who have written here have much to offer to those of us who teach 
the science of learning from data to use data to improve how we teach. Surely, 
statistics education stands at a junction of uniquely fruitful possibilities.

The advance of statistics as a subject depends on the advance of statistics as a 
profession. The advance of statistics as a profession depends on the advance of 
teaching statistics as a calling. The advance of statistics teaching as a calling 
depends on teaching statistics as a craft, and the advance of teaching statistics as a 
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craft depends on scientific research on how students learn statistics and how teach-
ers who pay attention can best help their students learn.

I conclude my preface with a concerning challenge and a brief for optimism. 
I start with my concerning challenge: a growing time lag. The cutting edge of 
statistics-the-subject is advanced by those who do the new research and teach it to 
their graduate students in their Ph.D. programs. But that reach is narrow—the per-
son who teaches the newest ideas in genomics is not often the same person who 
teaches the latest in Markov chain Monte Carlo or mining of business data. The 
cutting edge of teaching statistics-the-subject is advanced mainly by the very few 
Ph.D. graduates from those research-oriented universities who choose to teach at 
the few liberal arts colleges where the lighter teaching load allows time for curricu-
lar innovation and carries an expectation of creating new courses. A cutting edge of 
research in statistics education, one edge among many, depends on those faculty 
from liberal arts colleges who write and give talks about curricular innovations that 
trickle down from the research universities. To exploit the pernicious metaphor of 
trickle down: innovations in statistics-the-subject are funded from the top, innova-
tors in the K-16 curriculum get the fewer and smaller grants in statistics education, 
and the researchers in statistics education have all too often been consigned to feed 
off what’s left at the bottom. That was then. Fortunately, the growing emphasis on 
data science and assessment of effectiveness is changing these priorities.

My point here is to illustrate a concern about a time lag. It takes time for the latest 
research to make its way into graduate courses, and thence to the undergraduate cur-
riculum, and from there to articles and presentations that engage the attention of those 
education researchers who use data science to advance our understanding of how 
students learn data science. It’s not just the current time lag. I worry even more about 
a possible growing divergence between statistics-the-subject and statistics education 
research. Until recently, the overlap between statistics-the-subject and what education 
researchers learned about statistics as part of their Ph.D. programs could be regarded 
as the core of the subject. Now, statistics-the-subject expands rapidly in many direc-
tions. My concern: what should statistics education research regard as the core?

Concern and challenge aside, I conclude with deep reasons for optimism. Research 
in statistics education is unique in that the target subject (statistics), whose teaching and 
learning is being studied, is at the same time the main conceptual and methodological 
approach to learning from the research data. Those who study the teaching and learning 
of chemistry do not rely primarily on molecules to understand how their students learn. 
Those who study the learning and teaching of astronomy or microbiology do not observe 
students through a telescope or microscope. Uniquely in statistics education, all three of 
the (1) subject itself, (2) those committed to teaching the subject well, and (3) those who 
use science to study the teaching and learning of the subject share a “common core,” the 
subject itself. Our history bears this out: there have been no “stat wars.”

It is a deep pleasure to recommend this pioneering and peaceful volume to your 
attention.

George W. Cobb
Mount Holyoke College , 
South Hadley, MA, USA

Foreword
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Preface

After many years of hard work and extensive collaboration, we are deeply honored 
to present to the statistics and mathematics education communities the first 
International Handbook of Research in Statistics Education. We have been working 
for several decades to bring visibility and credibility to this important discipline that 
supports the teaching and learning of statistics. This handbook not only reflects 
those efforts but is designed to further promote high-quality research and 
improvements in the teaching and learning of statistics.

This book builds on our commitment over the past decade to explore ways to 
understand and develop students’ statistical literacy, reasoning, and thinking. 
Despite living and working in three different countries, we have collaborated 
together in person and via frequent Skype calls to produce a volume that reflects the 
current knowledge and ideas in statistics education.

Initial conversations about the need for a handbook began at the 2011 gathering 
of the International Research Forum on Statistical Reasoning, Thinking and Literacy 
(SRTL) held in the Netherlands. Plans solidified and an initial editorial board 
meeting was held in conjunction with the 2013 SRTL meeting in the USA.  We 
created a structure that included three main sections of the book, each overseen by 
two coeditors. Together we shaped the scope and goals of a unique handbook that 
could provide a valuable foundation for educators and researchers. We are deeply 
indebted to the six editors who worked with us in helping this vision become a 
published book:

Part I: Beth Chance and Allan Rossman
Part II: Maxine Pfannkuch and Robert delMas
Part III: Janet Ainley and Dave Pratt

It has been a great experience to work on this book with such dedicated and top-
notch editors and with the group of international scholars who collaborated on each 
chapter. Producing this book required ongoing reading, writing, discussing, and 
learning as well as a face-to-face meeting with many of the authors at ICOTS in the 
USA (July 12–13, 2014).
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We gratefully acknowledge the tremendously valuable assistance and feedback 
offered by all of the editors and chapter authors who reviewed the book chapters and 
from the entire SRTL community. We would also like to thank our colleagues in 
statistics education who acted as external reviewers for the chapters: Dor Abrahamson, 
Keren Aridor, Pip Arnold, Arthur Bakker, Stephanie Budgett, Gail Burrill, Helen 
Chick, Neville Davies, Adri Dierdorp, Andreas Eichler, Lyn English, Jill Fielding-
Wells, Iddo Gal, Einat Gil, Randall Groth, Jennifer Kaplan, Sibel Kazak, Cliff 
Konold, Gillian Lancaster, Cindy Langrall, Aisling Leavy, Rich Lehrer, Marsha 
Lovett, Helen MacGillivray, Sandy Madden, Hana Manor Braham, Maria Meletiou-
Mavrotheris, Jen Noll, Susan Peters, Robyn Pierce, Robyn Reaburn, Jackie Reid, 
Jim Ridgway, Luis Saldanha, Susanne Schnell, Mike Shaughnessy, Bob Stephenson, 
Jane Watson, Jeff Wilmer, Lucia Zapata-Cardona, and Andy Zieffler.

It has been a positive and productive collaboration. It has also been a delight for 
the three of us to work together on this project, especially as one of us (Joan Garfield) 
retires from her faculty position.

We are grateful to Springer Publishers, for providing a publishing venue for this 
book, and to Joseph Quatela, the editor who skillfully managed the publication on 
their behalf.

Lastly, many thanks go to our spouses Hava Ben-Zvi, Sanjay Makar, and Michael 
Luxenberg and to our children—Noa, Nir, Dagan, and Michal Ben-Zvi, Keya 
Makar, and Harlan and Rebecca Luxenberg—as our primary sources of energy and 
support.

Dani Ben-Zvi  Haifa, Israel
Katie Makar  St. Lucia, QLD, Australia
Joan Garfield Minneapolis, MN, USA

Preface
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Introduction

Statistics education has come of age. This unique discipline has emerged from a 
diverse set of foundations. Over the past 50 years, it has grown and developed its 
own identity. Every discipline needs a recognized body of research to establish its 
credibility as a legitimate field of knowledge and study. It is now time for this 
relatively new field of statistics education to have a research handbook that provides 
a collection and synthesis of the body of knowledge that supports the teaching and 
learning of statistics.

Statistics has become one of the most central topics of study in the modern world 
of information and big data. The dramatic increase in demand for learning statistics 
in all disciplines is accompanied by tremendous growth in research in statistics 
education. Increasingly, educators at all levels are teaching more topics and courses 
in quantitative reasoning, data analysis, and data science at lower and lower grade 
levels within mathematics and science and across other content areas. However, 
despite the growth in statistics education, research has continually revealed many 
challenges in helping learners develop statistical literacy, reasoning, and thinking. 
New curricula and technology tools show promise in facilitating the achievement of 
these desired outcomes. New research in the field can critically inform college 
instructors, classroom teachers, curriculum designers, researchers in mathematics 
and statistics education, policymakers, and newcomers to the field of statistics 
education.

This International Handbook of Research in Statistics Education aims to provide 
a solid foundation for such studies. Like statistics itself, statistics education research 
is by nature interdisciplinary, with its practices and principles developed from many 
different fields. In addition, current problems and methods of statistical practice in 
the changing world need to be shared with educators who are teaching today’s 
students.

We see the foundations of the knowledge and research findings presented in this 
handbook as based primarily on three areas of work that can be represented by the 
contributions of three extraordinary individuals who have made major contributions 
to knowledge. They are John Tukey (1915–2000), Amos Tversky (1937–1996), and 
Jean Piaget (1886–1980).
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Tukey helped move the practice of statistics into a new era of exploring data. 
In the 1970s, the reinterpretation of statistics into separate practices comprising 
exploratory data analysis (EDA) and confirmatory data analysis (CDA, inferential 
statistics) (Tukey, 1977) freed certain kinds of data analysis from ties to probability-
based models, so that the analysis of data could begin to acquire status as an inde-
pendent intellectual activity. The introduction of simple data tools, such as stem and 
leaf plots and boxplots, paved the way for students at all levels to analyze real data 
interactively without having to spend hours on the underlying theory, calculations, 
and complicated procedures. The work of Tukey and his colleagues was spread to 
students at all levels and led to new curriculum at the primary and secondary school. 
Computers and new pedagogies would later complete the “data revolution” in statistics 
education.

Tversky studied and enlightened the world about the ways people think and 
reason. He documented how often people misunderstand randomness and 
probability, leading them to use faulty heuristics when reasoning about samples. 
The work of Tversky and his colleagues (e.g., Kahneman, Slovic, & Tversky, 1982) 
has led to recognition of the new ways to build learning trajectories on existing 
foundations, of challenging faulty heuristics and biases through simulations and 
visual explorations, and of carefully assessing reasoning and thinking.

Finally, the work of Piaget (e.g., Inhelder & Piaget, 1958; Piaget & Inhelder, 
1962) provided models of how to carefully study individual children as they 
understand the world, as well as how they reason about chance and probability 
(Piaget & Inhelder, 1975). His methods for studying students in depth have paved 
the way for current researchers who carefully observe and study the thinking of 
children, including how they think about inference and chance events.

Although their work was developed in the last century, we believe that much of 
the current research in statistics education has been built on the insights and 
knowledge that these three brilliant and creative thinkers provided—and statistics 
education may be unique in connecting the fruits of their studies. Research in 
statistics education includes studies of how people think about data and chance, the 
errors they systematically make that affect their inferences and judgments, the use 
and impact of new tools and learning environments, and the use of rich, qualitative 
data through observation interviews and teaching experiments.

The work in this volume represents a collaboration amid a diverse set of profes-
sionals, including leading educators, researchers, and statisticians from around the 
world. Our goal was to provide a resource that connects the practice of statistics to 
the teaching and learning of the subject in light of current and future challenges. 
The chapter authors and part editors contributed in the development, writing, and 
editing of this book. Just as the discipline of statistics education is built on diverse 
scientific areas, the writers of these chapters come from the departments of statistics, 
mathematics education, psychology, and technology education and, in some cases, 
new programs in statistics education.

We have organized the book into three main parts that encompass the breadth and 
depth of research on teaching and learning statistics across educational levels and set-
tings. As such, the authors and editors strove to work in collaboration to link the main 
sections of the book with the diversity of ideas articulated throughout this handbook.

Introduction
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Part I: Statistics, Statistics Education, and Statistics Education Research
Part I of this handbook describes the interplay among the disciplines of statistics, 

statistics education, and statistics education research.

Part II: Major Contributions of Statistics Education Research
This part focuses on major contributions of statistics education research that 

relate to teaching, learning, and understanding statistics. It includes summaries of 
classic work as well as current work to show the progress and contrasting perspectives 
on main themes. Gaps in the research knowledge base are also identified.

Part III: Contemporary Issues and Emerging Directions
The focus of Part III of the handbook is on looking forward and examining 

emerging areas of statistics education research and their implications. Much of this 
section discusses more theoretical than empirical findings as the topics often have 
little research published so far or may be anticipated to be “on the horizon”.

The collaboration that led to the production of this handbook aims to provide a 
resource that can be utilized by all people interested in the latest international 
research on teaching and learning statistics. We are proud to be part of this new 
discipline that has come of age, and we look forward to seeing new advances in the 
teaching and learning of statistics to students at all levels.

Dani Ben-Zvi
The University of Haifa,  
Haifa, Israel

Katie Makar
The University of Queensland, St Lucia  
QLD, Australia

Joan Garfield
The University of Minnesota, Minneapolis  
MN, USA
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Part I
Statistics, Statistics Education, and 

Statistics Education Research

Beth Chance and Allan Rossman

Introduction to Part I

Our goal with Part I of the International Handbook of Research in Statistics 
Education is to set the stage for the articles and topics that form the bulk of the 
collection. We do this with three chapters that overview the history, core compo-
nents, and future of the fields of statistics, statistics education, and statistics educa-
tion research. In other words, Part I provides a careful examination of the interplay 
of the last three words of the handbook’s title. Consistently enough, all three chapters 
are written by a team of three coauthors, experienced and prominent statisticians, 
statistics educators, and statistics education researchers representing four countries. 
The goal of Part I is to give the reader an understanding of how statistics education 
has developed and grown into a discipline of its own, with an eye to future needs 
and research questions.

We hope that this part of the handbook will help to establish common ground and 
encourage interaction among three groups that are integral to statistics education: 
statisticians, teachers of statistics, and statistics education researchers. These groups 
have much to offer each other. For example, teachers can improve their students’ 
learning of statistics not only by understanding the discipline but also by applying 
the findings of education researchers and adapting them for effective teaching. 
Similarly, education researchers can engage in more meaningful and impactful 
research studies by not only knowing the discipline but also noting practices of 
effective teachers. We fear that even when members of these groups attend the same 
conference, such as ICOTS (the International Conference on Teaching Statistics), 
they may tend to focus on their own sessions and not engage with members of 
other groups; we therefore hope that the three chapters in this part lead to increased 
communication and consultation. Data scientists comprise a fourth group to be 
invited to the conversation, and these chapters touch on the role of data science in 
statistics education and its future.

To help understand the nature of statistics education research, we believe it is 
important to first understand the nature of statistics itself and how it differs from 
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other academic disciplines, which helps inform what should be taught and how. To 
address this very broad topic in the opening chapter, we turned to three accom-
plished statisticians who have also been very involved with curriculum development 
and other statistics education efforts at tertiary and secondary levels. Chris Wild has 
served as president of the International Association for Statistics Education and has 
provided substantial input into the K-12 statistics curriculum for New Zealand. 
Jessica Utts has been president of the American Statistical Association and has writ-
ten well-received textbooks for introductory statistics at the undergraduate level. 
Nick Horton chaired the ASA committee that revised guidelines for undergraduate 
programs in statistics and also served on the committee that revised the GAISE 
(Guidelines for Assessment and Instruction in Statistics Education) report for intro-
ductory undergraduate statistics. All three authors have played a role in identifying 
the needs and agenda for statistics education for informed consumers of quantitative 
information.

The first chapter, written by Wild, Utts, and Horton, discusses the nature of sta-
tistics as a scientific discipline, recounting some of its history and identifying 
 characteristics that exemplify statistical thinking and draw distinctions with math-
ematical thinking. The chapter also considers why statistics is important and rele-
vant in a wide variety of professional fields as well as for all educated citizens. 
Several examples highlight how statistical thinking is relevant in everyday life and 
necessary for advancing knowledge. The chapter concludes with discussion of sta-
tistics as a still- evolving and vibrant discipline in our contemporary world where 
data abound. Noting the growth of statistics as an academic major and as a career 
choice, along with the emergence of data science as a closely related field and popu-
lar career option, the final section dares to make some predictions about where the 
discipline of statistics is heading in the coming decades.

Having addressed the question of what is statistics, the second chapter moves on 
to consider the question: What is Statistics Education? The three authors share an 
association with the first doctoral program in the USA to specialize in statistics 
education. Joan Garfield is one of the leading statistics education researchers of the 
past 25 years, whose research and writings have had a substantial impact on the 
teaching and learning of statistics at all levels. Joan played a leading role in develop-
ing and shaping the Ph.D. program in Statistics Education at the University of 
Minnesota. Two of her former students in that program have joined her in authoring 
Chap. 2. Andy Zieffler was Joan’s first student in this program and has gone on to 
lead curriculum development and other statistics education projects. Elizabeth Fry 
is one of Joan’s most recent students, whose research focuses on developing high- 
quality assessments of curricular innovation in statistics education.

Chapter 2, written by Zieffler, Garfield, and Fry, begins by providing a brief his-
tory about the teaching and learning of statistics, first grounded in mathematics and 
science education and later broadened to include the teaching of statistics for all 
students at all levels. The authors identify milestones that led to statistics education 
establishing itself as a viable academic discipline, separate from statistics and from 
mathematics education. These milestones include the establishment of various pro-
fessional associations, conferences, and journals devoted exclusively to statistics 

B. Chance and A. Rossman



3

education. Statistics education encompasses a wide breadth of aspects and topics 
that will appear in later chapters in this volume. Zieffler et al. discuss several of 
these, including cognitive and noncognitive instructional goals, pedagogical 
approaches, use of technology, teacher preparation, and graduate programs in statis-
tics education. As much as possible in a single chapter, these issues are discussed for 
various education levels and from an international perspective.

As statistics education has evolved and distinguished itself, so has the related 
research literature. The final chapter in Part I provides perspectives on different 
forms of that research, and how that research has been positively influenced from 
several converging disciplines. The author team includes two recent editors of the 
Statistics Education Research Journal: Peter Petocz and Iddo Gal, and a third expert 
in both qualitative and quantitative approaches to education research: Anna Reid.

As one piece of this chapter, Petocz, Reid, and Gal performed their own research 
study to examine the current landscape of statistics education research by conduct-
ing a qualitative study of articles published in various outlets for statistics education 
research in the past few years. Their goals are to describe who performs this kind of 
research, what kinds of questions are being addressed with this research, and the 
methods and conceptual schemes used to conduct the research. Petocz et al. distin-
guish between what they refer to as small-r and large-R research, the former address-
ing local problems in a particular context and the latter investigating larger issues 
that generalize more broadly. After analyzing the results of their analysis, they con-
clude the chapter by suggesting some directions for future development of the dis-
cipline of statistics education.

This first part of the handbook addresses very far-reaching themes as it strives to 
provide a context for the more focused chapters that comprise the other parts of the 
handbook. We expect these opening three chapters to provide the reader with valu-
able perspectives on the challenging questions of what constitutes statistics, statis-
tics education, and statistics education research. We trust that these chapters will 
succeed in whetting the reader’s appetite to discover the research findings in statis-
tics education described in remaining handbook chapters, understand their implica-
tions, and look towards the future of statistics education.

Part I Statistics, Statistics Education, and Statistics Education Research
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Chapter 1
What Is Statistics?

Christopher J. Wild, Jessica M. Utts, and Nicholas J. Horton

Abstract What is statistics? We attempt to answer this question as it relates to 
grounding research in statistics education. We discuss the nature of statistics as the 
science of learning from data, its history and traditions, what characterizes statisti-
cal thinking and how it differs from mathematics, connections with computing and 
data science, why learning statistics is essential, and what is most important. Finally, 
we attempt to gaze into the future, drawing upon what is known about the fast- 
growing demand for statistical skills and the portents of where the discipline is 
heading, especially those arising from data science and the promises and problems 
of big data.

Keywords Discipline of statistics • Statistical thinking • Value of statistics • 
Statistical fundamentals • Decision-making • Trends in statistical practice • Data 
science • Computational thinking

1.1  Introduction

In this, the opening chapter of the International Handbook on Research in Statistics 
Education, we ask the question, “What is statistics?” This question is not considered 
in isolation, however, but in the context of grounding research in statistics educa-
tion. Educational endeavor in statistics can be divided very broadly into “What?” 
and “How?” The “What?” deals with the nature and extent of the discipline to be 
conveyed, whereas any consideration of “How?” (including “When?”) brings into 
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play a host of additional factors, such as cognition and learning theories, audience 
and readiness, attitudes, cultural issues, social interactions with teachers and other 
students, and learning, teaching and assessment strategies and systems.

This chapter discusses the nature of statistics as it relates to the teaching of sta-
tistics. The chapter has three main sections. Section 1.2 discusses the nature of sta-
tistics, including a brief historical overview and discussion of statistical thinking 
and differences with mathematics. Section 1.3 follows this up with a discussion of 
why learning statistics is important. Section 1.4 concludes the chapter with a discus-
sion of the growing demand for statistical skills and a look at where the discipline is 
heading. A thread pervading the chapter is changing conceptions of the nature of 
statistics over time with an increasing emphasis recently on broad, as opposed to 
narrow, conceptions of what statistics is. We emphasize broader conceptions because 
we believe they best address emerging areas of need and because we do not want 
researchers to feel constrained when it comes to deciding what constitutes fair game 
as targets for research.

1.2  The Nature of Statistics

“Statistics”—as defined by the American Statistical Association (ASA)—“is the 
science of learning from data, and of measuring, controlling and communicating 
uncertainty.” Although not every statistician would agree with this description, it is 
an inclusive starting point with a solid pedigree. It encompasses and concisely 
encapsulates the “wider view” of Marquardt (1987) and Wild (1994), the “greater 
statistics” of Chambers (1993), the “wider field” of Bartholomew (1995), the 
broader vision advocated by Brown and Kass (2009), and the sets of definitions 
given in opening pages of Hahn and Doganaksoy (2012) and Fienberg (2014).

Figure 1.1 gives a model of the statistical-inquiry cycle from Wild and Pfannkuch 
(1999). This partial, rudimentary “map” hints at the diversity of domains that con-
tribute to “learning from data.” The ASA description of statistics given above covers 
all elements seen in this diagram and more. Although statisticians have wrestled 
with every aspect of this cycle, particular attention has been given by statistical 
theory-and-methods thinkers and researchers to different elements at different 
times. For at least the last half century, the main focus has been on the use of proba-
bilistic models in the analysis and conclusion stages and, to a lesser extent, on sam-
pling designs and experimental designs in the plan stage. But a wider view is needed 
to chart the way of statistics education into the future.

The disciplines of statistics and, more specifically, statistics education are, by 
their very nature, in the “future” business. The mission of statistics education is to 
provide conceptual frameworks (structured ways of thinking) and practical skills to 
better equip our students for their future lives in a fast-changing world. Because the 
data universe is expanding and changing so fast, educators need to focus more on 
looking forward than looking back. We must also look back, of course, but predomi-
nantly so that we can plunder our history’s storehouses of wisdom to better chart 
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pathways into the future. For educational purposes, statistics needs to be defined by 
the ends it pursues rather than the means statisticians have most often used to pursue 
them in the past. Changing capabilities, like those provided by advancing  technology, 
can change the preferred means for pursuing goals over time, but the fundamental 
goals themselves will remain the same. The big-picture definition that we opened 
with “keeps our eyes on the ball” by placing at the center of our universe the funda-
mental human need to be able to learn about how our world operates using data, all 
the while acknowledging sources and levels of uncertainty:

Statisticians develop new methodologies in the context of a specific substantive problem, 
but they also step back and integrate what they have learned into a more general framework 
using statistical principles and thinking. Then, they can carry their ideas into new areas and 
apply variations in innovative ways. (Fienberg, 2014, p. 6)

At their core, most disciplines think and learn about some particular aspects of life 
and the world, be it the physical nature of the universe, living organisms, or how 
economies or societies function. Statistics is a meta-discipline in that it thinks about 
how to think about turning data into real-world insights. Statistics as a meta- 
discipline advances when the methodological lessons and principles from a particu-
lar piece of work are abstracted and incorporated into a theoretical scaffold that 
enables them to be used on many other problems in many other places.

Fig. 1.1 The statistical-inquiry cycle

1 What Is Statistics?
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1.2.1  History of Statistics

This section outlines the evolution of major threads that became interwoven to make 
statistics what it is today, forming the basis of the ways in which we gather, think 
about, and learn using data. These threads include the realization of the need for 
data, randomness and probability as a foundation for statistical modeling and deal-
ing with uncertainty, theories underpinning principled approaches to data collection 
and analysis, and graphics for exploration and presentation of messages in data.

Although the collection of forms of census data goes back into antiquity, rulers 
“were interested in keeping track of their people, money and key events (such as 
wars and the flooding of the Nile) but little else in the way of quantitative assess-
ment of the world at large” (Scheaffer, 2001, para. 3). The statistical analysis of data 
is usually traced back to the work of John Graunt (e.g., his 1662 book Natural and 
Political Observations). For example, Graunt concluded that the plague was caused 
by person-to-person infection rather than the competing theory of “infectious air” 
based on the pattern of infections through time. Graunt and other “political arithme-
ticians” from across Western Europe were influenced during the Renaissance by the 
rise of science based on observation of the natural world. And they “thought as we 
think today … they reasoned about their data” (Kendall, 1960, p. 448). They esti-
mated, predicted, and learned from the data—they did not just describe or collect 
facts—and they promoted the notion that state policy should be informed by the use 
of data rather than by the authority of church and nobility (Porter, 1986). But the 
political arithmetician’s uses of statistics lacked formal methodological techniques 
for gathering and analyzing data. Methods for sample surveys and census taking 
were in their infancy well into the nineteenth century (Fienberg, 2014).

Another fundamental thread involved in building modern statistics was the foun-
dation of theories of probability, as laid down by Pascal (1623–1662) and later 
Bernoulli (1654–1705), which were developed to understand games of chance. The 
big conceptual steps from that toward the application of probability to inferences 
from data were taken by Bayes in 1764 and Laplace (1749–1827) by inverting prob-
ability analyses, i.e., using knowledge about probabilities of events or data given 
parameters to make inferences about parameters given data:

The science that held sway above all others around 1800 was astronomy, and the great 
mathematicians of the day made their scientific contributions in that area. Legendre (least 
squares), Gauss (normal theory of errors), and Laplace (least squares and the central limit 
theorem) all were motivated by problems in astronomy. (Scheaffer, 2001, para. 6)

These ideas were later applied to social data by Quetelet (1796–1874), who with 
notions such as the “average man” was trying to arrive at general laws governing 
human action, analogous to the laws of physics. This was after the French Revolution 
when there was a subtle shift in thinking of statistics as a science of the state with 
the statists, as they were known, conducting surveys of trade, industrial progress, 
labor, poverty, education, sanitation, and crime (Porter, 1986).

Another thread in the development of statistics involves statistical graphics (see 
Friendly, 2008). The first major figure is William Playfair (1759−1823), credited 
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with inventing line charts, bar charts, and the pie chart. Friendly (2008) character-
izes the period from 1850 to 1900 as the “golden age of statistical graphics” (p. 2). 
This is the era of John Snow’s famous “dot map” in which he plotted the locations 
of cholera deaths as dots on a map which then implicated water from the Broad 
Street pump as a likely cause; of Minard’s famous graph showing losses of soldiers 
in Napoleon’s march on Moscow and subsequent retreat; of Florence Nightingale’s 
coxcomb plot used to persuade of the need for better military field hospitals; and of 
the advent of most of the graphic forms we still use for conveying geographically 
linked information on maps, including such things as flow diagrams of traffic pat-
terns, of grids of related graphs, of contour plots of three-dimensional tables, popu-
lation pyramids, scatterplots, and many more.

The Royal Statistical Society began in 1834 as the London Statistical Society 
(LSS), and the American Statistical Association was formed in 1839 by five men 
interested in improving the US census (Horton, 2015; Utts, 2015b). Influential 
founders of the LSS (Pullinger, 2014, pp. 825−827) included Adolphe Quetelet, 
Charles Babbage (inventor of the computer), and Thomas Malthus (famous for his 
theories about population growth). The first female LSS member was Florence 
Nightingale, who joined in 1858 (she also became a member of the ASA, as did 
Alexander Graham Bell, Herman Hollerith, Andrew Carnegie, and Martin Van 
Buren). These early members of LSS and ASA were remarkable for representing 
such a very wide variety of real-world areas of activity (scientific, economic, politi-
cal, and social) and their influence in society:

Near the end of the nineteenth century, the roots of a theory of statistics emerge from the 
work of Francis Galton and Francis Ysidro Edgeworth and from that of Karl Pearson and 
George Udny Yule somewhat later. These scientists came to statistics from biology, eco-
nomics, and social science more broadly, and they developed more formal statistical meth-
ods that could be used not just within their fields of interest but across the spectrum of the 
sciences. (Fienberg, 2014, p. 4)

Another wave of activity into the 1920s was initiated by the concerns of William 
Gosset, reaching its culmination in the insights of Ronald Fisher with the develop-
ment of experimental design, analysis of variance, maximum likelihood estimation, 
and refinement of significance testing. This was followed by the collaboration of 
Egon Pearson and Jerzy Neyman in the 1930s, giving rise to hypothesis testing and 
confidence intervals. At about the same time came Bruno de Finetti’s seminal work 
on subjective Bayesian inference and Harold Jeffreys’s work on “objective” 
Bayesian inference so that by 1940 we had most of the basics of the theories of the 
“modern statistics” of the twentieth century. World War II was also a time of great 
progress as a result of drafting many young, mathematically gifted people into posi-
tions where they had to find timely answers to problems related to the war effort. 
Many of them stayed in the field of statistics swelling the profession. We also draw 
particular attention to John Tukey’s introduction of “exploratory data analysis” in 
the 1970s; this is an approach to data analysis that involves applying a variety of 
exploratory techniques, many of them visual, to gain insight into a dataset and 
uncover underlying structure and exceptions.

1 What Is Statistics?
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Short histories of statistics include Fienberg (2014, Section 3); Scheaffer (2001), 
who emphasized how mathematicians were funded or employed and the influence 
this had on what they thought about and developed; and Pfannkuch and Wild (2004) 
who described the development of statistical thinking. Lengthier accounts are given 
by Fienberg (1992) and the books by Porter (1986), Stigler (1986, 2016), and 
Hacking (1990). Key references about the history of statistics education include 
Vere-Jones (1995), Scheaffer (2001), Holmes (2003), and Forbes (2014); see also 
Chap. 2.

The current scope and intellectual content of statistics is the result of evolution-
ary processes involving both slow progress and leaps forward due to the insights of 
intellectual giants and visionaries, all affected by the intellectual climate of their day 
and the recognized challenges in the world in which they lived. But it has not reached 
some fixed and final state. It continues to evolve and grow in response to new chal-
lenges and opportunities in the changing environment in which we now live.

1.2.2  Statistical Thinking

Statisticians need to be able to think in several ways: statistically, mathematically, 
and computationally. The thinking modes used in data analysis differ from those 
used in working with mathematical derivations, which in turn differ from those used 
for writing computational code. Although there are very strong internal connections 
within each of these thinking modes, there are relatively weak connections among 
them. Here we will concentrate on “statistical thinking” in the sense of the most 
distinctively statistical parts of the thinking that goes on in solving real-world prob-
lems using data.

In statistics, however, we sometimes talk about “solving real-world (or practical) 
problems” far too loosely. For the general public, “solving a real-world problem” 
involves taking action so that the problem either goes away or is at least reduced 
(e.g., unemployment levels are reduced). We need to better distinguish between 
satisfying “a need to act” and “a need to know.” Figuring out how to act to solve a 
problem will typically require acquiring more knowledge. This is where statistical 
inquiry can be useful. It addresses “a need to know.” So when statisticians talk about 
solving a real-world problem, we are generally talking about solving a (real-world) 
knowledge-deficit or understanding-deficit problem.

1.2.2.1  Statistical Thinking in Statistical Inquiry

Wild and Pfannkuch (1999) investigated the nature of statistical thinking in this 
sense using available literature, interviews with practicing statisticians, and inter-
views with students performing statistical-inquiry activities and presented models 
for different “dimensions” of statistical thinking.

C.J. Wild et al.
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Dimension 1 in Wild and Pfannkuch’s description of statistical thinking is the 
PPDAC model (Fig. 1.1) of the inquiry cycle. The basic PPDAC model was due to 
and later published by MacKay and Oldford (2000). There are also other essentially 
equivalent descriptions of the statistical-inquiry cycle. The inquiry cycle has con-
nections with standard descriptions of the scientific method but is more flexible, 
omitting the latter’s strong emphasis on being hypothesis driven and having (scien-
tific) theory formulation as its ultimate objective.

The PPDAC inquiry cycle reminds us of the major steps involved in carrying out 
a statistical inquiry. It is the setting in which statistical thinking takes place. The 
initial “P” in PPDAC spotlights the problem (or question) crystallization phase. In 
the early stages, the problem is typically poorly defined. People start with very 
vague ideas about what their problems are, what they need to understand, and why. 
The problem step is about trying to turn these vague feelings into much more pre-
cise informational goals, some very specific questions that should be able to be 
answered using data. Arriving at useful questions that can realistically be answered 
using statistical data always involves a lot of hard thinking and often a lot of hard 
preparatory work. Statistics education research says little about this, but the PhD 
thesis of Arnold (2013) makes a very good start.

The plan step is then about deciding what people/objects/entities to obtain data 
on, what things we should “measure,” and how we are going to do all of this. The 
data step is about data acquisition, storage, and wrangling (reorganizing the data 
using various transformations, merging data from different sources, and cleansing 
the data in preparation for analysis). The analysis step which follows and the con-
clusions step are about making sense of it all and then abstracting and communicat-
ing what has been learned. There is always a back-and-forth involving doing 
analysis, tentatively forming conclusions, and doing more analysis. In fact there is 
back-and-forth between the major steps whenever something new gets learned in a 
subsequent step that leads to modifying an earlier decision (Konold & Pollatsek, 
2002).

Any substantial learning from data involves extrapolating from what you can see 
in the data you have to how it might relate to some wider universe. PPDAC focuses 
on data gathered for a purpose using planned processes, processes that are chosen 
on statistical grounds to justify certain types of extrapolation. Much of the current 
buzz about the widespread availability and potential of data (including “big data”) 
relates to exploiting opportunistic (happenstance or “found”) data—data that just 
happen to be available in electronic form because they have accumulated for other 
reasons, such as the result of the administrative processes of business or govern-
ment, audit trails of internet activity, or billing data from medical procedures:

In a very real sense, we have walked into the theatre half way through the movie and have 
then to pick up the story. … For opportunistic data there is no extrapolation that is justified 
by a data-collection process specifically designed to facilitate that extrapolation. The best 
we can do is to try to forensically reconstruct what this data is and how it came to be (its 
‘provenance’). What entities were ‘measures’ taken on? What measures have been 
employed and how? By what processes did some things get to be recorded and others not? 
What distortions might this cause? It is all about trying to gauge the extent to which we can 
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generalize from patterns in the data to the way we think it will be in populations or pro-
cesses that we care about. (Wild, 2017, p. 34)

In particular, we are on the lookout for biases that could lead us to false 
conclusions.

Dimension 2 of Wild and Pfannkuch’s model lists types of thinking, broken 
down into general types and types fundamental to statistics. The general types are 
strategic, seeking explanations, constructing and using models, and applying tech-
niques (solving problems by mapping them on to problem archetypes). The types 
fundamental to statistics listed are recognition of the need for data, transnumeration 
(changing data representations in search of those that trigger understanding), con-
sideration of variation and its sources, reasoning using statistical models, and inte-
grating the statistical and the contextual (information, knowledge, conceptions). 
Something that is not highlighted here is the inductive nature of statistical infer-
ence—extrapolation from data on a part to reach conclusions about a whole (wider 
reality).

Dimension 3 is the interrogative cycle, a continually operating high-frequency 
cycle of generating (possible informational requirements, explanations, or plans of 
attack), seeking (information and ideas), interpreting these, criticizing them against 
reference points, and judging whether to accept, reject, or tentatively entertain them. 
Grolemund and Wickham (2014) dig much deeper into this dimension bringing in 
important ideas from the cognitive literature.

Dimension 4 consists of a list of personal qualities, or dispositions, successful 
practitioners bring to their problem solving: skepticism, imagination, curiosity and 
awareness, a propensity to seek deeper meaning, being logical, engagement, and 
perseverance. This is amplified in Hahn and Doganaksoy’s chapter “Characteristics 
of Successful Statisticians” (2012, Chapter 6).

1.2.2.2  Statistical Thinking for Beginners

Although it only scratches the surface, the above still underscores the richness and 
complexity of thinking involved in real-world statistical problem solving and pro-
vides a useful set of reference points against which researchers and teachers can 
triangulate educational experiences (“Where is … being addressed?”). It is, how-
ever, far too complex for most students, particularly beginners. In discussing Wild 
and Pfannkuch, Moore (1999) asked, “What shall we teach beginners?” He 
suggested:

… we can start by mapping more detailed structures for the ‘Data, Analysis, Conclusions’ 
portion of the investigative cycle, that is, for conceptual content currently central to elemen-
tary instruction. Here is an example of such a structure:

When you first examine a set of data, (1) begin by graphing the data and interpreting what 
you see; (2) look for overall patterns and for striking deviations from those patterns, and 
seek explanations in the problem context; (3) based on examination of the data, choose 
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appropriate numerical descriptions of specific aspects; (4) if the overall pattern is suffi-
ciently regular, seek a compact mathematical model for that pattern. (Moore, 1999, p. 251)

Moore (1998) offered the following for basic critique, which complements his 1999 
list of strategies with “Data beat anecdotes” and the largely metacognitive ques-
tions, “Is this the right question? Does the answer make sense? Can you read a 
graph? Do you have filters for quantitative nonsense?” (p. 1258).

There are great advantages in short, snappy lists as starting points. Chance’s 
(2002) seven habits (p. 4) bring in much of Moore’s lists, and the section headings 
are even “snappier”: “Start from the beginning. Understand the statistical process as 
a whole. Always be skeptical. Think about the variables involved. Always relate the 
data to the context. Understand (and believe) the relevance of statistics. Think 
beyond the textbook.” Grolemund and Wickham (2014, Section 5) give similar lists 
for more advanced students. Brown and Kass (2009) state, “when faced with a prob-
lem statement and a set of data, naïve students immediately tried to find a suitable 
statistical technique (e.g., chi-squared test, t-test), whereas the experts began by 
identifying the scientific question” (p. 123). They highlighted three “principles of 
statistical thinking”:

 1. Statistical models of regularity and variability in data may be used to express 
knowledge and uncertainty about a signal in the presence of noise, via inductive 
reasoning. (p. 109)

 2. Statistical methods may be analyzed to determine how well they are likely to 
perform. (p. 109)

 3. Computational considerations help determine the way statistical problems are 
formalized. (p. 122)

We conclude with the very specialized definition of Snee (1990), which is widely 
used in quality improvement for business and organizations:

I define statistical thinking as thought processes, which recognize that variation is all 
around us and present in everything we do, all work is a series of interconnected processes, 
and identifying, characterizing, quantifying, controlling, and reducing variation provide 
opportunities for improvement. (p. 118)

1.2.3  Relationship with Mathematics

Although definitions that characterize statistics as a branch of mathematics still lin-
ger in some dictionaries, the separate and distinct nature of statistics as a discipline 
is now established. “Statistical thinking,” as Moore (1998) said, “is a general, fun-
damental, and independent mode of reasoning about data, variation, and chance” 
(p. 1257). “Statistics at its best provides methodology for dealing empirically with 
complicated and uncertain information, in a way that is both useful and scientifi-
cally valid” (Chambers, 1993, p. 184).

1 What Is Statistics?
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“Statistics is a methodological discipline. It exists not for itself but rather to offer 
to other fields of study a coherent set of ideas and tools for dealing with data” (Cobb 
& Moore, 1997, p. 801). To accomplish those ends it presses into service any tools 
that are of help. Mathematics contains many very useful tools (as does computing). 
Just as physics attempts to understand the physical universe and presses mathemat-
ics into service wherever it can help, so too statistics attempts to turn data into 
 real- world insights and presses mathematics into service wherever it can help. And 
whereas in mathematics, mathematical structures can exist and be of enormous 
interest for their own sake, in statistics, mathematical structures are merely a means 
to an end (see also Box, 1990, paragraph 2; De Veaux & Velleman, 2008). A conse-
quence is, adapting a famous quotation from John Tukey, whereas a mathematician 
prefers an exact answer to an approximate question, an applied statistician prefers 
an approximate answer to an exact question.

The focus of the discipline of statistics, and in particular the role of context, is 
also distinct. “Statistics is not just about the methodology in a particular application 
domain; it also focuses on how to go from the particular to the general and back to 
the particular again” (Fienberg, 2014, p. 6):

Although mathematicians often rely on applied context both for motivation and as a source 
of problems for research, the ultimate focus in mathematical thinking is on abstract pat-
terns: the context is part of the irrelevant detail that must be boiled off over the flame of 
abstraction in order to reveal the previously hidden crystal of pure structure. In mathemat-
ics, context obscures structure. Like mathematicians, data analysts also look for patterns, 
but ultimately, in data analysis, whether the patterns have meaning, and whether they have 
any value, depends on how the threads of those patterns interweave with the complementary 
threads of the story line. In data analysis, context provides meaning. (Cobb & Moore, 1997, 
p. 803; our emphasis)

There is a constant “interplay between pattern and context” (Cobb & Moore, 1997). 
As for statistical investigations for real-world problems, the ultimate learning is new 
knowledge about the context domain—we have gone “from the particular to the 
general” (to enable us to use methods stored in our statistical repository) “and back 
to the particular again” (to extract the real-world learnings).

We will now turn our attention to the role of theory in statistics. When most 
statisticians speak of statistical theory, they are thinking of mathematical theories 
comprising “statistical models” and principled ways of reasoning with and draw-
ing conclusions using such models. Statistical models, which play a core role in 
most analyses, are mathematical models that include chance or random elements 
incorporated in probability theory terms. Perhaps the simplest example of such a 
model is y = μ + ε where we think in terms of y being an attempt to measure a 
quantity of interest μ in the process of which we incur a random error ε (which 
might be modeled as having a normal distribution, say). In the simple linear model, 
y = β0 + β1x + ε, the mean value of y depends linearly on the value of an explana-
tory variable x rather than being a constant. Random terms (cf. ε) model the unpre-
dictable part of a process and give us ways of incorporating and working with 
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uncertainties. “Statistical theory” in this sense is largely synonymous with “math-
ematical statistics.”

Probability theory is a body of mathematical theory which was originally moti-
vated by games of chance. More recently it has been motivated much more by the 
needs of statistical modeling, which takes abstracted ideas about randomness, 
forms mathematical structures that encode these ideas and makes deductions about 
the behavior of these structures. Statistical modelers use these structures as some 
of the building blocks that they can use in constructing their models, as with the 
random error term in the very simple model above. Recent work by Pfannkuch 
et al. (2016) draws on interviews with stochastic modeling practitioners to explore 
probability modeling from a statistical education perspective. The paper offers a 
new set of (conceptual) models of this activity. Their SWAMTU model is basically 
a cycle (with some feedback). It has nodes problem Situation → Want (to know) → 
Assumptions → Model → Test → Use. Models are always derived from a set of 
mathematical assumptions so that assumption checking against data is, or should 
be, a core part of their construction and use. As well as being used in statistical 
analysis, they are commonly used to try to answer “what if” questions (e.g., “What 
would happen if the supermarket added another checkout operator?”). Although 
there is much that is distinct about statistical problem solving, there is also much 
that is in common with mathematical problem solving so that statistics education 
researchers can learn a lot from work in mathematics education research and clas-
sic works such as Schoenfeld (1985).

When most statisticians hear “theory,” they think “statistical theory” as described 
above, mathematical theories that underpin many important practices in the analy-
sis and plan stages of PPDAC. But “theory” is also applicable whenever we form 
abstracted or generalized explanations of how things work. Consequently, there is 
also theory about other elements of PPDAC, often described using tools like flow 
charts and concept maps (cf. Fig.  1.1). For example, Grolemund and Wickham 
(2014) propose a theoretical model for the data analysis process by comparing it to 
the cognitive process of the human mind called “sensemaking” involving updating 
schemas (mental models of the world) in light of new information.

In recent years there has also been a shift in the “balance of power” from overtly 
mathematical approaches to data analysis toward computationally intensive 
approaches (e.g., using computer simulation-based approaches including bootstrap-
ping and randomization tests, flexible trend smoothers, and classification algo-
rithms). Here the underlying models make much weaker assumptions and cannot be 
described in terms of simple equations. So, although “the practice of statistics 
requires mathematics for the development of its underlying theory, statistics is dis-
tinct from mathematics and requires many nonmathematical skills” (American 
Statistical Association Undergraduate Guidelines Workgroup, 2014, p.  8). These 
skills (required also by many other disciplines) include basic scientific thinking, 
computational/algorithmic thinking, graphical/visualization thinking (Nolan & 
Perrett, 2016), and communication skills.
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So, “… how is it then that statistics came to be seen as a branch of mathematics? 
It makes no more sense to us than considering chemical engineering as a branch of 
mathematics” (Madigan & Gelman, 2009, p. 114). The large majority of senior stat-
isticians of the last half century began their academic careers as mathematics majors. 
Originally, computational capabilities were extremely limited, and mathematical 
solutions to simplified problems and mathematical approximations were hugely 
important (Cobb, 2015). The academic statisticians also worked in environments 
where the reward systems overwhelmingly favored mathematical developments. 
The wake-up call from “big data” and “data science” is helping nudge statistics 
back toward its earlier, and much more holistic, roots in broad scientific inference 
(Breiman, 2001).

1.3  Why Learning Statistics Is More Important Than Ever

In today’s data-rich world, all educated people need to understand statistical ideas 
and conclusions, to enrich both their professional and personal lives. The wide-
spread availability of interesting and complex data sets and increasingly easy access 
to user-friendly visualization and analysis software mean that anyone can play with 
data to ask and answer interesting questions. For example, Wild’s Visual Inference 
Tools (https://www.stat.auckland.ac.nz/~wild/VIT/) and iNZight software (https://
www.stat.auckland.ac.nz/~wild/iNZight) allow anyone to explore data sets of their 
own choosing. The CODAP (Common Online Data Analysis Platform, https://con-
cord.org/projects/codap) provides a straightforward platform for web-based data 
analysis, as does iNZight Lite (http://lite.docker.stat.auckland.ac.nz/), and commer-
cial solutions created by TuvaLabs (https://tuvalabs.com), and Tableau (https://
www.tableau.com).

Statistical methods are used in almost all knowledge areas and increasingly are 
used by businesses, governments, health practitioners, other professionals, and indi-
viduals to make better decisions. Conclusions and advice based on statistical meth-
ods abound in the media. Some of the thinking used for decision-making based on 
quantitative data carries over into decision-making involving uncertainty in daily 
life even when quantitative data are not available. For these reasons, probably no 
academic subject is more useful to both working professionals and informed citi-
zens on a daily basis than statistics.

The rapid development of data science and expansion of choices for what to 
teach in statistics courses provides challenges for statistics educators in determining 
learning goals, and opportunities for statistics education researchers to explore what 
instructional methods can best achieve those goals. For example, in articles that 
appeared almost simultaneously, both Cobb (2015) and Ridgway (2015) argued that 
we need a major overhaul of the university statistics curriculum, particularly the 
introductory course and the undergraduate curriculum. Similar arguments can be 
made for greater inclusion of data skills at the primary and secondary school levels. 
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To ignore the impact of the widespread availability of data and user-friendly soft-
ware to play with data would lead to marginalization of statistics within the expand-
ing world of data science.

An important and engaging component of the current data revolution is the exis-
tence of “data traces” of people’s day to day activities, captured in social networks, 
personal logging devices, and environmental sensors. Teaching students how to 
examine their own personal data in constructive ways can enhance the attractiveness 
of learning data skills. These advances offer people new ways to become agents and 
advocates empowered to use data to improve the world around them in relation to 
situations of special relevance to their own lives (Wilkerson, 2017, personal 
communication).

In this section we provide some additional motivation for why everyone would 
benefit from studying statistics and some examples of what could be useful for vari-
ous constituencies. Statistics educators could then make sure to emphasize the use-
fulness of statistics when they teach, targeted to their respective audiences. Statistics 
education researchers study how we can teach students to use statistical reasoning 
throughout their lives to ask and answer questions relevant to them.

The ideal type and amount of statistical knowledge and competencies needed by 
an individual depends on whether the person will eventually be working with data 
as a professional researcher (a producer of statistical studies), interpreting statistical 
results for others (a professional user of statistics), or simply needing to understand 
how to use data and interpret statistical information in life (an educated consumer 
of data and statistics). Professional users include health workers (who need to 
understand results of medical studies and translate them into information for 
patients), financial advisors (who need to understand trends and variability in eco-
nomic data), and politicians (who need to understand scientific data as it relates to 
public policy, as well as how to conduct and understand surveys and polls). Producers 
of statistical studies are likely to take several courses in statistical methods, and will 
not be the focus of this chapter (see Sect. 1.4 for more discussion). Educated con-
sumers include pretty much everyone else in a modern society. They need to under-
stand how and what valid conclusions can be made from statistical studies and how 
statistical thinking can be used as a tool for answering questions and making deci-
sions, with or without quantitative data.

1.3.1  What Professional Users of Statistics Need to Know

Many professionals do not need to know how to carry out their own research stud-
ies, but they do need to know how to interpret and question results of statistical 
studies and explain them to patients and customers. In business applications, profes-
sionals such as marketing managers may need to understand the results generated 
by statisticians within their own companies. In this section we provide a few exam-
ples of why professional users of statistics need to understand basic statistical ideas 
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beyond what is needed for the general consumer. Commonly used statistical meth-
ods differ somewhat across disciplines, but there are some basic ideas that apply to 
almost all of them. One of the most fundamental concepts is the importance of 
variability and a distribution of values. The first example illustrates how that con-
cept is important for financial advisors and their clients.

1.3.2  Example 1: How Much Should You Save? Income 
and Expense Volatility

In 2015 the financial giant JP Morgan Chase announced the establishment of a 
research institute to utilize the massive and proprietary set of financial data it owns 
to answer questions about consumer finances. The inaugural report, published in 
May 2015 (Farrell & Greig, 2015), examined financial data for 100,000 individuals 
randomly selected from a 2.5 million person subset of Chase customers who met 
specific criteria for bank and credit card use. One of the most important and publi-
cized findings (e.g., Applebaum, 2015) was that household income and expendi-
tures both vary widely from month to month and not necessarily in the same 
direction. For instance, the report stated that “41% of individuals experienced fluc-
tuations in income of more than 30% on a month-to-month basis” (p. 8) and “a full 
60% of people experienced average monthly changes in consumption of greater 
than 30%” (p. 9). Additionally, the report found that changes in income and con-
sumption don’t occur in tandem, so it isn’t that consumers are spending more in 
months when they earn more. Why is this important information? Financial plan-
ners routinely advise clients to have accessible savings equivalent to 3–6 months of 
income. But in some cases, that may not be enough because of the volatility in both 
income and expenditures and the possibility that they can occur in opposite direc-
tions. One of three main findings of the report was “the typical individual did not 
have a sufficient financial buffer to weather the degree of income and consumption 
volatility that we observed in our data.” (p. 15).

A concept related to variability is that few individuals are “typical.” In the previ-
ous example, individual consumers should know whether the warnings in the report 
are likely to apply to them based on how secure their income is, what major expen-
ditures they are likely to encounter, and what resources they have to weather finan-
cial storms. Knowing that the “typical” or “average” consumer needs to stash away 
3–6 months of income as savings could lead to questions about how each individu-
al’s circumstances might lead to recommendations that differ from that advice.

Baldi and Utts (2015) discussed topics and examples that are important for future 
health practitioners to learn in their introductory, and possibly only, statistics course. 
One central concept is that of natural variability and the role it plays in defining 
disease and “abnormal” health measurements. The next example, adapted from 
Baldi and Utts, illustrates how knowledge about variability and a distribution of 
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values can help physicians and their patients put medical test results in 
perspective.

1.3.3  Example 2: High Cholesterol for (Almost) All

Medical guidelines routinely change based on research results, and statistical stud-
ies often lead pharmaceutical companies and regulatory agencies to change their 
advice to medical practitioners about what constitutes pathology. According to the 
United States National Institutes of Health, high cholesterol is defined as having 
total blood cholesterol of 240 mg/dL or above, and elevated or borderline high cho-
lesterol is defined as between 200 and 240 mg/dL (http://www.nhlbi.nih.gov/health/
health-topics/topics/hbc). Suppose you are diagnosed with high or borderline high 
cholesterol and your doctor recommends that you take statin drugs to lower it. You 
might be interested in knowing what percentage of the population is in the same 
situation. Using data from the World Health Organization (Lawes, Vander Hoorn, 
Law, & Rodgers, 2004), we can model the total cholesterol levels of women aged 
45–59 years old in the United States using a normal distribution with mean of about 
216 mg/dL and standard deviation of about 42 mg/dL. Figure 1.2 illustrates this 
distribution. As shown in the figure, about 35% of women in this age group have 
high cholesterol, and an additional 36.5% have borderline high values. That means 
that only about 28.5% do not have this problem! Should more than 70% of middle- 
aged women be taking statin drugs? Given that there are risks associated with high 
cholesterol and side effects associated with taking statin drugs, this is a discussion 
for individuals to have with their doctors. But it would be helpful for both of them 

Cholesterol (mg/dl)
200

36.5%

240216

high
Borderline

35%

High

28.5%

"Normal"

Fig. 1.2 Cholesterol values for women aged 45–59; mean ≈ 216 mg/dL (standard deviation ≈ 
42 mg/dL)
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to understand that more than a majority of the population fall into these cholesterol 
risk categories. Additional statistical reasoning tools (beyond the scope of this 
example) are needed to help physicians and consumers understand the trade-off in 
risks associated with taking statin drugs or not. But this example illustrates the 
importance of understanding the concept of a distribution of values, and how it 
relates to decisions individuals need to make.

1.3.4  What Educated Consumers of Data and Statistics Need 
to Know

Most students who take a statistics course will never use formal statistical proce-
dures in their professional lives, but quite often they will encounter situations for 
which they could utilize data and statistical information in their personal lives to 
make informed decisions. Teachers of introductory statistics should provide instruc-
tion that will help people utilize that information. In the papers by Ridgway (2015), 
Baldi and Utts (2015), Utts (2003), and Utts (2010), more than a dozen important 
topics are described, with multiple examples. A few of them were covered in the 
previous section on what professional users of statistics need to know. Here, we list 
more of them and explain why they are important for consumers. Examples to illus-
trate each of these can be found in the references mentioned here, as well as in 
textbooks with a focus on statistical literacy such as Cohn and Cope (2011), Hand 
(2014), Moore and Notz (2016), and Utts (2015a). A resource for current examples 
is the website http://www.stats.org, a joint venture of the American Statistical 
Association and Sense About Science USA.

1.3.4.1  Unwarranted Conclusions Based on Observational Studies

The media have improved in the interpretation of observational studies in recent 
years, but reports implying causation based on observational studies are still quite 
common. Citizens should learn to recognize observational studies and know that 
cause and effect conclusions cannot be made based on them. Here are some recent 
examples of misleading headlines based on observational studies or meta-analyses 
of them:

• “6 cups a day? Coffee lovers less likely to die, study finds” (NBC News, 2012)
• “Citrus fruits lower women’s stroke risk” (Live Science, 2012)
• “Walk faster and you just might live longer” (NBC News, 2011)

In many cases those conducting the research cautioned against making a causal 
conclusion, but the headlines are what people read and remember. Students and citi-
zens should always question whether a causal conclusion is warranted and should 
know how to answer that question.
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1.3.4.2  Statistical Significance Versus Practical Importance

Ideally, university students would learn the correct interpretation of p-values in an 
introductory statistics course. (See Nuzzo, 2014, for a nontechnical explanation of 
p-values.) But the most common misinterpretation, that the p-value measures the 
probability that chance alone can explain observed results, is difficult to overcome. 
So students at least should learn the importance of distinguishing between statistical 
significance and practical importance.

For example, in the previously referenced article, Nuzzo (2014) discusses a study 
claiming that those who meet online have happier marriages (p < 0.001) and lower 
divorce rates (p < 0.002) than those who meet offline. The p-values of less than 
0.001 and 0.002 look impressive, but on a 7-point scale, the average “happiness” 
ratings for the two groups were 5.48 and 5.64, and the divorce rates were 7.67% and 
5.96%. These differences are of little practical importance. The small p-values 
resulted from the large sample size of over 19,000 people.

The easiest way to illustrate the difference between statistical significance and 
practical importance is to look at a variety of studies that have small p-values, such 
as the one just described, and then look at a confidence interval for the population 
parameter in each case. Although p-values are often used in situations that don’t 
involve an easily interpretable parameter (for which a confidence interval could be 
computed), showing examples for which there is an interpretable parameter will 
make the point about statistical versus practical significance and especially about 
the importance of sample size.

In 2016 the American Statistical Association took the unusual step of publishing 
a statement on the use and misuse of p-values (Wasserstein & Lazar, 2016) along 
with commentaries by numerous statisticians. Within a year of publication, the 
statement was viewed nearly 200,000 times, indicating widespread interest in learn-
ing more about how to use and interpret p-values.

Aspects such as the size of the study and how that impacts the p-value are impor-
tant if students are to understand the distinction between statistical significance and 
practical importance. Introducing the concept of “effect size” can help make this 
point, as illustrated in the next section.

1.3.4.3  The Difference Between No Effect and No Statistically Significant 
Effect

Studies that find no statistically significant effect may never make it into publication 
because they are not thought to have found anything of interest and are not news-
worthy. But often media reports will mention an “unsuccessful replication” of an 
earlier study and report it as if it contradicts the earlier result. Consumers should 
understand that there are multiple reasons for this apparent contradiction, and they 
do not all imply a real contradiction.

Consider the following scenario, called the “hypothesis testing paradox” (Utts & 
Heckard, 2015, p. 542). A researcher conducts a t-test for a population mean based 
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on a sample of n = 100 observations, obtaining a result of t = 2.50 and p = 0.014, so 
the null hypothesis is rejected. The experimenter decides to repeat the experiment 
with n = 25 observations to verify the result but finds disappointingly that the result 
is t = 1.25, p = 0.22, and so she cannot reject the null hypothesis. The effect seems 
to have disappeared. To salvage the situation, she decides to combine the data, so 
now n = 125. Based on the combined data, t = 2.80, p-value = 0.006! How could a 
second study that seemed to diminish the statistically significant result of the first 
study somehow make the result stronger when combined with the first study?

The paradox is that the second study alone did not replicate the finding of statisti-
cal significance, but when combined with the first study, the effect seems even 
stronger than the first study alone, with the p-value going from 0.014 to 0.006. The 
problem of course is that the test statistic and p-value depend on the sample size. In 
fact in this example, the effect size (measured as x s−( )µ0 / ) is the same in both 
studies. It is the sample size that creates the difference in t and the p-value. See 
Table 1.1 for a numerical explanation.

1.3.4.4  Sources of Potential Bias in Studies and Surveys 
and the Population to Which Results Apply

As fewer households maintain landline telephones and caller ID makes it easy to 
ignore calls from unfamiliar numbers, it is becoming increasingly difficult to get 
representative samples for surveys and other statistical studies. Consequently, in 
many cases the results of surveys and other studies may not reflect the population of 
interest. According to Silver (2014), “Even polls that make every effort to contact a 
representative sample of voters now get no more than 10 percent to complete their 
surveys—down from about 35 percent in the 1990s” (para. 1).

Lack of response is just one of many sources of bias that can enter into surveys 
and other studies. Other sources of bias include poor and/or intentionally biased 
wording of questions, the order in which questions are asked, who is asking, and 
whether the topic is one for which people are inclined to lie (for instance, to appear 
to conform to social norms). When reading results of surveys, it’s important to know 
exactly what was asked; who asked; whether questions were asked in person, by 
mail, by phone, or online; and whether special interest groups were involved in any 
way that could affect the results. Cohn and Cope (2011) provide a detailed list of 
questions journalists should ask when covering these kinds of studies, but the list is 

Table 1.1 Hypothetical example of the relationships among sample size, test statistic, and p-value

Study n Effect size x s−( )µ0 / Test statistic t p-value

1 100 0.25 2.50 0.014
2  25 0.25 1.25 0.22
Combined 125 0.25 2.80 0.006

The same effect size yields a statistically significant result for a larger study
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relevant to anyone interested in learning more about how to detect bias in survey 
results. Questions cover things like finding out exactly how the questions were 
worded, how the respondents were selected, what percent of those contacted 
responded, whether the survey was funded by a special interest group, and whether 
the possible response choices were chosen to favor a certain viewpoint.

1.3.4.5  Multiple Testing and Selective Reporting

Almost all studies measure multiple explanatory and/or response variables and 
therefore conduct multiple statistical tests to find out which variables are related. It 
is very common for the media to report the findings that happen to be statistically 
significant without mentioning that they were part of a larger study. If the original 
research report did not correct the reported results for multiple testing, the statisti-
cally significant findings could easily be spurious. Given that 20 independent tests 
with true null hypotheses are expected to yield one with statistical significance, it is 
not surprising that false claims make their way into the media. Students should learn 
to ask how many different tests were conducted in a study and whether the statistical 
results were adjusted for multiple testing. Ioannidis (2005) illustrates this problem 
and related issues with many examples in his article “Why most published research 
findings are false.”

1.3.4.6  Interpreting Relative Risk, Absolute Risk, Personal Risk, 
and Risk Trade-Offs

Knowing how to think about risk can help consumers in many ways. Education 
research has shown that teaching risk and relative risk in terms of frequencies 
instead of probabilities will make them easier for most students to understand, and 
giving baseline risks in addition to relative risks will allow people to make more 
informed decisions (Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, & Woloshin, 
2008), particularly when the base rate is very low. For example, students understand 
the idea that 3 out of 1000 people may die from a certain treatment more readily 
than they understand that 0.003 or 0.3% of those treated may die. Saying that a 
certain behavior doubles your probability (or risk) of cancer from 0.003 to 0.006 is 
not easy for most people to understand, but saying that the behavior increases the 
number of cases of cancer in people similar to them from 3 in 1000 to 6 in 1000 is 
much easier to understand. And reporting frequencies instead of proportions makes 
the role of baseline risk much more clear. Most people can understand that an 
increase from 3 in 1000 to 6 in 1000 is different than an increase from 30 in 1000 to 
60 in 1000 and will immediately recognize what the baseline risk is in each case.

As an example, Utts (Utts, 2015a, p. 258) describes a study showing that the risk 
of esophageal cancer in men who drink alcohol daily is about three times the risk for 
men who don’t drink (the baseline risk). If you are a male who drinks daily, how 
much should this concern you? According to statistics from the United States 
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National Cancer Institute, the annual incidence of esophageal cancer in men is 
about 7.7 cases per 100,000 men. That statistic includes both drinkers and nondrink-
ers, so let’s guess that the baseline risk, for nondrinkers, is about 5 in 100,000. That 
would tell us that the risk for daily drinkers is about 15 per 100,000. This is not 
nearly as worrisome as it would be if the tripled risk meant a change of 5 per hun-
dred to 15 per hundred. Knowing the baseline risk is important in deciding how 
much of a concern a particular relative risk might be.

Another important feature of risk to explain to students is that changing one 
behavior to avoid risk may lead to increasing risk of a different outcome. For 
instance, taking drugs to reduce blood pressure or cholesterol may increase the risk 
of other medical problems. Having a mammogram to reduce the risk of undetected 
breast cancer may increase the risk of the effects of radiation, or add a psychological 
risk of having a false positive result, and the accompanying stress. A striking exam-
ple by Gigerenzer et al. (2008), described by Utts (2010), illustrated how a media 
scare associated with birth control pills in the United Kingdom resulted in reduced 
use of the pills but led to large increases in abortions and teen pregnancies, which 
had much higher risks than the use of the pills would have had. Educated citizens 
should understand how to view behavior changes that reduce risk in the broader 
context of risk trade-offs.

1.3.4.7  Conditional Probability and “Confusion of the Inverse”

Psychologists know that people have very poor intuition about probability. One 
example is called “confusion of the inverse,” in which people confuse conditional 
probability in one direction with conditional probability in the other direction. A 
classic example is confusing the probability of a positive test result given that you 
have a disease with the probability of having the disease, given a positive test result. 
The two probabilities can of course be vastly different, and this confusion has 
undoubtedly led to much unnecessary angst in people who receive a false positive 
medical test result. In a classic study that helped psychologists understand this phe-
nomenon, Eddy (1982) showed that physicians gave estimates of the probability of 
having breast cancer given a positive mammogram that were ten times too high, 
close to 0.75 when the actual probability was 0.075.

Another example of this confusion is in the courtroom, where the probability of 
guilt given particular evidence is not the same as the probability of that evidence, 
given that the person is guilty. Again these can be vastly different, and juries need to 
recognize the difference. For example, suppose size 13 shoe prints are found at the 
scene of a crime. Then it is quite likely that, given a person is guilty of that crime, 
the person wears size 13 shoes. But it is not at all likely that (without other evi-
dence) a person is guilty of the crime, given that he wears size 13 shoes.

Similar to explanations of relative risk (as in the previous example), conditional 
probabilities are easier to understand using frequencies instead of proportions or 
probabilities. One of the easiest ways to illustrate conditional probabilities in both 
directions, and how they differ, is through the use of a “hypothetical hundred 
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 thousand” table. Suppose a disease occurs on average in three out of 1000 people in 
the population and that a test for the disease is 99% accurate when someone has the 
disease (the test says they do) and when they don’t have the disease (the test says 
they do not). What is the probability that a person has the disease, given that a test 
is positive? A table of a hypothetical 100,000 people can be constructed as follows 
(Table 1.2). First, fill in the row totals. If three out of 1000 have the disease, then 300 
out of 100,000 have it, and 99,700 do not. Next fill in the cells in each row for posi-
tive and negative tests. 99% of the 300 with the disease is 297 people, which shows 
that 297 test positive and three test negative. Similarly, of the 99,700 without the 
disease, 1%, or 997 test positive, and the remaining 98,703 would test negative. So 
the hypothetical 100,000 people would distribute as shown in the table, and the 
probability of having the disease given a positive test is easily seen to be 
297/1294 = 0.23.

See Utts (2010) for another example, as well as for other ways that psychological 
influences can affect probability estimates and interpretation.

1.3.5  What Decision Makers Need to Know

Statistical ideas and methods provide many tools for making decisions in life, espe-
cially decisions that involve trade-offs. Previously we discussed how competing 
risks often need to be taken into account when making decisions. We now discuss 
some other ways in which statistical ideas can help with making decisions when 
trade-offs are involved.

1.3.5.1  The Importance of Expected Values to Make Better Decisions

Insurance companies, casinos, lottery agencies, and sellers of extended warranties 
all rely on expected values and can exploit consumers who do not understand them. 
In all of those cases, consumers overall are the losers, but sometimes the protection 
(as with insurance and extended warranties) is worth the loss. The important point 
for consumers is to understand how to figure out when that is true. As an example, 
if you buy an appliance, should you buy the extended warranty? If you have suffi-
cient income or financial reserves to have it fixed or replaced, the answer is probably 
not. In the long run, you will lose money if you often buy insurance and extended 
warranties. But an individual consumer does not get the benefit of “the long run” in 

Table 1.2 The probability of having the disease given a positive test

Test positive Test negative Total

Have disease  297 3 300
Do not have disease  997 98,703 99,700
Total 1294 98,706 100,000
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something like the purchase of a house or car, so in those cases it may be worth 
 having the insurance in the (small probability) event of a disaster. Also, if you are a 
real klutz and tend to break things, you might actually come out ahead with certain 
extended warranties. Students should understand these issues so they can make 
informed choices.

1.3.5.2  Example: Should You Pay in Advance?

Here is a simple example of where knowledge of expected value could be useful 
in making a decision (Utts, 2015a, Exercise 17.29). Suppose you are planning to 
stay at a hotel a month from now but are not 100% sure you will take the trip. The 
hotel offers two payment choices. You can pay an “advance purchase” price of $85 
now, nonrefundable. Or, you can reserve a room and pay $100 when you go, but 
not pay anything if you decide not to go. Which choice should you make? With the 
advance purchase, the “expected value” of what you will pay is $85, because the 
probability is 1.0 that you will pay that amount. Define p to be the probability that 
you will take the trip. If you don’t use the advance purchase option, the expected 
value for what you will pay is ($100)(p) + ($0)(1 − p) = $100p. Note that $100p 
is less than $85 if p is less than 0.85. So if you think the probability of taking the 
trip is less than 0.85, the advance purchase is not a good idea, but if you think the 
probability is higher than 0.85, the expected value is lower by taking advantage of 
the advance purchase.

1.3.6  Using the Hypothesis Testing Framework to Make 
Decisions

In addition to the technical aspects of statistical studies, the reasoning used for 
hypothesis testing can be useful in making decisions even without quantitative data. 
Consider the following example from the life of one of the authors.

Table 1.3 Did the dog eat the chocolate?

Hypothesis
Decision
Dog did not eat the chocolate Dog did eat the chocolate

Null: Dog did not eat the 
chocolate

No trip to veterinarian; OK Type 1 error: Go to vet; dog has 
stomach pumped needlessly

Alternative: Dog did eat 
the chocolate

Type 2 error: Do not go to 
vet. Dog could die

Go to vet; thank goodness you had 
stomach pumped
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The empty wrapper for a chocolate bar is sitting on a table, carelessly left 
where your dog could find it. The person involved cannot remember whether 
they ate the whole chocolate bar or left half of it exposed on the table. You fear 
that the dog consumed the remainder of the chocolate, an indulgence that could 
be fatal to the dog. Should you rush to the veterinarian to have your dog’s stom-
ach pumped?

We can think about this decision in the framework of hypothesis testing and look 
at the equivalent of type 1 and type 2 errors when considering the decision, as 
shown in Table 1.3. The actual decision will depend on how likely you think the two 
hypotheses are, but illustrating the possible choices and their consequences can be 
informative and helpful in making a decision.

In this example, if there was even a relatively small chance that the dog ate the 
chocolate, most dog owners would be likely to take the dog to the vet for an evalu-
ation. In general, the decision would be based on the seriousness of the conse-
quences of the two types of errors. Laying the choices out in this kind of table makes 
those consequences clearer.

1.3.7  Final Remarks About the Importance of Statistics

It is hard to predict the future of data science and statistics, as resources become 
available that allow easy access to data and methods for visualizing and analyzing 
them. As eminent statistician Brad Efron noted, “Those who ignore statistics are 
condemned to reinvent it” (attributed to Efron by Friedman, 2001, p. 6), and as 
Wild (2015) notes, “their ignorance can do real damage in the meantime” (p. 1). 
Statistics educators have a grave responsibility and an exciting opportunity to 
make sure that everyone learns how useful statistics can be. Statistics education 
researchers have their work cut out for them in figuring out how best to convey 
these ideas in ways that are useful and that will allow students to make better deci-
sions using data.

1.4  Where Statistics Is Heading

The previous sections have described the nature of statistics and the importance of 
statistical education. In this section we discuss current developments and make sug-
gestions about where the field is heading.
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1.4.1  An Exciting Time to be a Statistician

This is an exciting time to be a statistician. Interest in the discipline of statistics and 
the analysis of data is booming. The amount of information collected in our increas-
ingly data-centered society is staggering. Statistical expertise is more valuable than 
ever, with society and employers clamoring for graduates who can blend knowledge 
of statistics, data management, computing, and visualization to help make better 
decisions. But with the opportunities afforded by this rich information come threats 
for statistics as a discipline. What does the future hold? What do we need to be 
addressing to ensure that students are developing the statistical skills, knowledge, 
and competencies they need for their lives and careers?

Speaking of the recent availability of a vast flood of data is not hyperbole. George 
Lee of Goldman Sachs estimates that 90% of the world’s data have been created in 
the last 2 years (http://www.goldmansachs.com/our-thinking/pages/big-data.html). 
The 2013 Future of Statistics (2013) report enumerates examples such as astron-
omy, where new telescopes will generate a petabyte of data each day and commer-
cial databases at social media companies such as Facebook, which generate more 
than 500 terabytes per day. United States President Barack Obama signed an Open 
Data Executive Order in 2013 (https://obamawhitehouse.archives.gov/the-press-
office/2013/05/09/executive-order-making-open-and-machine-readable-new-de-
fault-government-) that called for data on health, energy, education, safety, finance, 
and global development to be made machine accessible to “generate new products 
and services, build businesses, and create jobs,” and this has led to increased access 
to sophisticated and detailed information.

These increasingly diverse data are being used to make decisions in all realms of 
society. Consider the theme for the American Association for the Advancement of 
Science (AAAS) annual meeting in 2015 (Innovations, Information, and Imaging) 
that focused on the ways that science and technology are being transformed by new 
ways to collect and use information, with progress increasingly driven by the ability 
to organize, visualize, and analyze data (AAAS, 2015).

Planning a trip to New York City (NYC)? It’s straightforward to download and 
analyze data on all commercial flights in the United States since 1987 (180 million 
records, http://www.amherst.edu/~nhorton/precursors), 14 million taxi rides in 
2013

(http://www.andresmh.com/nyctaxitrips/) and over a billion records for 2009–
2015 (http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml), millions of 
Citi Bike rentals (http://www.citibikenyc.com/system-data), and restaurant viola-
tions (http://www.nyc.gov/html/doh/html/services/restaurant-inspection.shtml). 
Useful information of this type is widely available for many other large cities, gov-
ernments, and domains.

It’s worth noting that although much is said about “big data,” none of these NYC 
examples qualify. A typical definition of “big data” requires datasets with sizes that 
are difficult to process in a timely fashion using a typical workflow. This definition 
references the 3Vs model (http://www.gartner.com/newsroom/id/1731916) of vol-
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ume,  velocity, and variety. The NYC examples have a modest volume but low veloc-
ity and modest variety (forms of data not easily stored in a rectangular array). 
Though issues of “big data” are important, many more challenges and opportunities 
are available for smaller scale information.

The development of new and easier to use computational tools (many of which 
are open-source with less barrier to adoption) has spurred the analysis of these new 
data sources. Recent efforts include general frameworks for data wrangling 
(Wickham, 2014), improved access to high performance database systems (e.g., 
http://cran.rstudio.com/web/packages/dplyr/vignettes/databases.html), and sophis-
ticated interfaces for data scraping and related web technologies (e.g., Nolan & 
Temple Lang, 2014). A number of teachers have taken heed of the advice of those 
working to incorporate data wrangling and management skills early in the curricu-
lum (Carver & Stevens, 2014).

1.4.2  A Challenging Time for Statistics

Although this is undoubtedly an exciting time to be a statistician, there are a number 
of challenges that loom. The demand for quantitative skills is clearly there. The 
widely cited McKinsey report (Manyika et al., 2011) described the potential short-
age of hundreds of thousands of workers with the skills to make sense of the enor-
mous amount of information now available. But where will the hundreds of 
thousands of new workers anticipated by the McKinsey report and others come 
from? Graduates of undergraduate statistics programs will be a small fraction (even 
if the growth seen in the recent decade continues or accelerates). Increased supply 
is unlikely to be solved by an influx of new statistics doctoral students; while the 
number of doctoral graduates is slowly increasing, growth is insufficient to meet 
demand for new positions in industry, government, and academia.

Where else can these skilled graduates be found? If they aren’t produced by sta-
tistics programs, where will they come from? The London report (Future of 
Statistical Sciences, 2013) describes the need for data scientists—the exact defini-
tion of which is elusive and very much a matter of debate—and raises important 
questions about the identity and role of statisticians (Horton, 2015; Wasserstein, 
2015). What is meant by data scientist? What skills are required? What training is 
needed to be able to function in these new positions? What role does statistics have 
in this new arena? How can it be ensured that critical statistical messages be trans-
mitted to students educated in other types of program that feed the data science 
shortfall?

A widely read Computing Research Association white paper (CRA, 2012) on the 
challenges and opportunities with “big data” starts in an encouraging manner: “The 
promise of data-driven decision-making is now being recognized broadly, and there 
is growing enthusiasm for the notion of ‘Big Data’.” But it is disconcerting that the 
first mention of statistics is on the sixth page of the report: “Methods for querying 
and mining Big Data are fundamentally different from traditional statistical analysis 
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on small samples” (CRA, 2012, p. 6). The remaining references include statistics in 
passing as a bag of tricks (but not central to the use of data to inform 
decision-making).

In his video introduction to the keynote for the Strata  +  Hadoop Big Data 
Conference in 2015, United States President Barack Obama stated that “under-
standing and innovating with data has the potential to change how we do almost 
anything for the better.” We applaud these sentiments. However, the fact that “statis-
tics” was not mentioned in the presentation (or in many media depictions of this 
new and growing field) is a serious concern.

As another example of the challenges for the role of statistics in this era of “big 
data,” consider the new Advanced Placement Computer Science Principles course, 
offered for the first time in the fall of 2016 (AP CS Principles, 2017). The response 
has been phenomenal, with almost 48,000 students taking the exam in 2017. In 
contrast, the AP Statistics exam was taken by about 7,000 students in its first year 
(1997) and about 216,000 students in 2017. This course focuses on the development 
of foundational computing skills, programming literacy, and an understanding of 
the impact of computing applications. It includes “creativity” and “data and infor-
mation” as two of seven “big ideas” that underlie the curriculum. The description of 
creativity includes discussion of how “computing facilitates exploration and the 
creation of computational artifacts and new knowledge that help people solve per-
sonal, societal, and global problems” (AP CS Principles, 2017, p. 11). Big idea 3 is 
subtitled “Data and information facilitate the creation of knowledge.” The course 
description states:

Computing enables and empowers new methods of information processing, driving monu-
mental change across many disciplines—from art to business to science. Managing and 
interpreting an overwhelming amount of raw data is part of the foundation of our informa-
tion society and economy. People use computers and computation to translate, process, and 
visualize raw data and to create information. Computation and computer science facilitate 
and enable new understanding of data and information that contributes knowledge to the 
world. Students in this course work with data using a variety of computational tools and 
techniques to better understand the many ways in which data is transformed into informa-
tion and knowledge. (p. 18)

Learning Objective 3.1.1 describes “use of computers to process information, find 
patterns, and test hypotheses about digitally processed information to gain insight 
and knowledge.” This objective feels more expansive than the entire Advanced 
Placement Statistics course, where students are expected to “describe patterns and 
departures from patterns; plan and conduct a study; explore random phenomena 
using probability and simulation; and estimate population parameters and test 
hypotheses” (AP Statistics, 2016). While the success of its implementation remains 
to be seen, the Advanced Placement Computer Science Principles course provides 
an expansiveness of vision and pregnant sense of possibility for personal lives and 
the wider world. This is something that statistics education needs to learn from. The 
London report (Future of Statistical Sciences, 2013) warned that unless statisticians 
engage in related areas such as computation and data-related skills that are perhaps 
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less familiar, there is a potential for the discipline to miss out on the important sci-
entific developments of the twenty-first century.

What are the areas where statistics may need to adapt to be relevant to data sci-
ence? In addition to pedagogy and content, technology is a key realm. While the 
Guidelines for Assessment and Instruction in Statistics Education (GAISE) K-12 
(2005) and College (2016) reports encouraged the use of technology (which, on a 
more positive note, is now widespread in most courses), hundreds of thousands of 
high school students still use calculators rather than computers for their analyses, 
limiting their ability to move beyond simple calculations or gain any sense of real-
istic workflows that they might encounter in the real world. But much worse, it also 
narrowly constricts their vision of what statistics is and can be and neglects the huge 
potential of the visual sense for gaining insights from data. This is certainly not the 
technology being used by data scientists (or implemented in the new Advanced 
Placement Computer Science Principles course).

1.4.3  Where Are We Headed?

The growth of data science as a discipline presents both opportunities and chal-
lenges for statisticians and statistical educators (Ridgway, 2015). Data scientists are 
being hired by employers looking for innovative problem solvers with expertise in 
programming, statistical modeling, machine learning, and strong communication 
skills (Rodriguez, 2013).

Computer scientists bring useful skills and approaches to tackle the analysis of 
large, complex datasets. Statisticians bring important expertise in terms of the 
understanding of variability and bias to help ensure that conclusions are justified. In 
addition to “big data,” increasingly sophisticated probabilistic (stochastic) models 
are being developed, for example, in areas such as genetics, ecology, and climate 
science. Data science is often described as a “team sport.” The complementary skills 
from many historically disparate disciplines need to be blended and augmented to 
ensure that data science is on a solid footing. But this means that to be relevant in 
this age of data, statisticians must be better oriented toward data science, lest data 
science move on without statistics.

The emergence of statistics as a distinct discipline, and not just as an add-on to 
mathematics for highly educated specialists, is relatively new. The growth of data 
science has highlighted the importance of computer science and shifted the ground 
in terms of connections with other disciplines. Some aspects of statistics are rooted 
in mathematics. Moving forward, however, the connections to mathematics will 
remain rooted with aspects of discrete and applied mathematics along with the 
highly dynamic and productive interface with computer science is emphasized.

A number of individuals have proposed creative solutions for statisticians to 
respond to the data science challenge. In his 2012 ASA presidential address, Robert 
Rodriguez proposed a “big tent” for statistics that included anyone who uses statistics, 
including related disciplines such as analytics and data science (Rodriguez, 2013). 
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Brown and Kass (2009) warned that to remain vibrant, statistics needs to open up its 
view of statistical training. Nolan and Temple Lang (2010) outlined a curriculum to 
build computational skills as a basis for real-world analysis. Finzer proposed a frame-
work to establish “data habits of mind” (2013). Diane Lambert of Google described 
the need for students to be able to “think with data” (Horton & Hardin, 2015).

The future of statistics is likely to be closely tied to aspects of data science. 
Success in this realm will require extensive and creative changes to our secondary 
and tertiary curriculum, along with partnerships with colleagues in related disci-
plines. Considerable work in the realm of statistics education research is needed to 
assess approaches and methods that attempt to address these capacities. The 
American Statistical Association has been proactive in creating reports to address 
potential curriculum changes for the present; see the GAISE College Report (2016) 
and GAISE K-12 Report (2005) and the Curriculum Guidelines for Undergraduate 
Programs in Statistical Science (ASA Undergraduate Guidelines Working Group, 
2014). But statistics and data science are rapidly evolving, and curriculum and ped-
agogical changes need to evolve as well to remain relevant.

1.5  Closing Thoughts

There is a growing demand for statistical skills, knowledge, and competencies at the 
same time that the field of statistics and data science is broadening. Although there 
are many barriers to the adoption of changes in a curriculum that is already bulging 
with topics and increasingly heterogeneous in terms of approach, the alternative—
allowing data science to proceed without statistics—is not attractive. It would not 
only diminish statistics, it would also diminish “data science” and worsen data- 
based decision-making in society. It would limit the attractiveness of statistics grad-
uates to the employment market, and through that, limit the attractiveness of 
statistics programs themselves.

Cobb (2015) likened changing curricula to moving a graveyard: never easy in 
any circumstance. Developing additional capacities in statistics students takes time. 
This will likely require approaches that provide repeated exposure and a spiraling 
curriculum that introduces, extends, and then integrates statistical and data-related 
skills. It includes getting students to come to grips with multidimensional thinking, 
preparing them to grapple with real-world problems and complex data, and provid-
ing them with skills in computation. These are challenging topics to add to the cur-
riculum, but such an approach would help students to tackle more sophisticated 
problems and facilitate their ability to effectively make decisions using data. Perhaps 
most importantly, it should also include successfully fostering an expansiveness of 
vision within students of the potential of statistics for their world and their own 
future lives.

With so much curricular, pedagogical and technological change under way, this 
is an exciting time to be involved in statistics education research. To chart our way 
into an exciting future of teaching and learning that best benefits our students, there 
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are so many important research questions to be addressed, including determining 
how best to target, structure, teach, and assess the emerging curricula. There has 
never been a wider array of interesting and important problems for statistics educa-
tion researchers to grapple with than there is right now. The insights within this 
volume should help spark and guide efforts in this realm for many years to come.
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Chapter 2
What Is Statistics Education?

Andrew Zieffler, Joan Garfield, and Elizabeth Fry

Abstract Statistics education is an interdisciplinary field that is focused on the 
teaching and learning of statistics. This chapter describes how the discipline of 
statistics education has emerged and evolved from the training of statistics practi-
tioners to the education of students at all levels and from a practice rooted in math-
ematics and science to a subject utilized across many disciplines. It also examines 
the current landscape of statistics education, exploring the diversity in the content 
and setting of statistics instruction around the world. Finally, the chapter outlines 
several opportunities and challenges on the horizon for statistics education.

Keywords Statistics education history • Secondary and tertiary levels • Statistics 
education reform • Professional organizations and journals • Content • Pedagogy  
• Technology • Research • Teacher preparation

2.1  Introduction

Statistics education is an interdisciplinary field that is focused on the teaching and 
learning of statistics. Evolving from the field of mathematics education, which sup-
plied valuable theories of learning, models of conceptual development and change, 
and methods of qualitative research (e.g., teaching experiments, clinical interviews), 
statistics education has emerged as an independent area of inquiry and scholarship 
with its own journals, conferences, organizations, websites, and curriculum stan-
dards (Garfield & Ben-Zvi, 2008).

Perhaps 1982, the year of the First International Conference on Teaching 
Statistics (ICOTS), can serve as the official start date of this discipline. Prior to that 
time, very few people produced scholarship in statistics education, and the primary 
outlets for the dissemination of that scholarship were national and international con-
ferences in mathematics education or mathematics education research journals. 
Scholars were also publishing statistics education research in other, domain-specific 

A. Zieffler (*) • J. Garfield • E. Fry 
Department of Educational Psychology, The University of Minnesota, Minneapolis, MN, USA
e-mail: zief0002@umn.edu; jbg@umn.edu; fryxx069@umn.edu

mailto:zief0002@umn.edu
mailto:jbg@umn.edu
mailto:fryxx069@umn.edu


38

journals (e.g., psychology, economics). Today, there is a growing community of 
scholars and researchers in statistics education, as well as an abundance of meet-
ings, journals, and supporting organizations specifically associated with statistics 
education.

This chapter describes how the discipline of statistics education emerged and 
evolved from the training of statistics practitioners to the education of students at all 
levels, from a practice rooted in mathematics and science to a subject utilized across 
many disciplines. We examine the breadth of activities and resources in statistics 
education as well as current trends and future challenges. From an international 
perspective, a broad survey of statistical education will be provided, along with a 
synthesis of similarities across countries. We demonstrate how this discipline builds 
on and generates research, as well as how the research connects scholars and prac-
titioners across many disciplines. Finally, we conclude with a discussion of current 
issues and challenges involving teachers, students, and researchers.

Before we begin, we note that although probability plays an important role in 
statistics education, we will rarely refer to it in this chapter. We made this decision 
in part because we view probability as a separate discipline from statistics and only 
a single component of statistics education, not its entirety. We refer readers more 
directly interested in the teaching of probability to Jones (2005), Kapadia and 
Borovcnik (1991), Shaughnessy (1991), Jones, Langrall, and Mooney (2007), and 
Chernoff and Sriraman (2014).

2.2  Brief History of Statistics Education

Although statistics education has evolved from the disciplines of mathematics edu-
cation and science education, it nevertheless has its own history, which will be 
briefly described in this section. More descriptive and comprehensive accounts may 
be found in the writings of Bibby (1986a, 1986b), Hunter (1999), Neyman (1976), 
Scheaffer (2001), and Scheaffer and Jacobbe (2014).

2.2.1  Statistics Instruction: Late 1800s–Early 1900s

The teaching of statistics prior to 1900 was focused on the topics of collection, 
examination, and presentation of quantitative data (Bibby, 1986a; Fitzpatrick, 1955; 
Walker, 1890, 1929). The courses, taught at colleges and universities, were primar-
ily intended to train government-sponsored researchers and professionals to enu-
merate and quantify characteristics of the populace. A typical statistics course of the 
era is described by Walker (1890):

The pupil is taught to look up the data relating to a given subject, as these may be found 
scattered through a long series of official reports; to bring the various statements together; 
to examine them as to their proper compatibility; to test their accuracy by all means which 
may be available; and to put them back together into tables. The student is further taught to 
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work out the percentages involved and to set one class of facts into relation with others; as, 
for example, to compute the ratio of valuation, or of expenditure, or of mortality, to each 
million or each thousand of the population concerned; and, finally, to make diagrams or 
charts, which shall exhibit graphically the several elements, taken in their due proportions, 
as ascertained by the investigation. (p. 7)

Many countries were also introducing statistics into their school curricula at 
early levels. For example, Bibby (1986a) suggests that in Hungary, probability was 
taught as part of the curriculum in schools as early as 1849 and in France was being 
taught in geography courses by 1868. In 1870, Britain established a Statistics in 
Schools committee to pursue the more formal introduction of statistics into the 
national curriculum (however, documents suggest it might have been disbanded 
after a mere 8 days). Japan and Belgium also introduced statistics into the school- 
level curriculum around this time period (Bibby, 1986b).

Around the turn of the twentieth century, the application of statistics trended to 
the natural sciences (e.g., biology) and began to emphasize increasingly specialized 
methodology rather than merely quantitative description. The content of statistics 
courses quickly followed suit. For example, many tertiary-level textbooks intro-
duced the use and application of newer data analytic methods such as measures of 
center, dispersion, and correlation (e.g., Bailey, 1906; Davenport, 1899; King, 
1912). At the secondary level, Perry (1900) proposed a more data-oriented syllabus 
for the mathematics curriculum being taught in British schools that included inter-
polation and probable errors.

It was around this time that statistics instruction became more mainstream in the 
curriculum at many institutions. Several colleges and universities began teaching 
courses solely devoted to statistics. In the next section, we explore some of the his-
torical milestones of statistics instruction at the tertiary level.

2.2.2  Milestones in Tertiary-Level Statistics Instruction

In the early twentieth century, several universities (especially those in the United 
States) began teaching more formal statistics courses. These courses were taught in 
a diverse set of scholarly departments, most of which were employing statistics in 
the research and practical work of their respective academic fields. As the number 
of statistics courses being offered at the postsecondary level continued to rise, there 
were also more appeals for increased and better instruction from early proponents 
of statistics education (e.g., Chaddock, 1926; Willcox, 1910).

One of the most divisive arguments during this time period concerned the level 
and amount of mathematical theory that students needed in their statistical training. 
The growing division between courses offered in statistical application and in 
 mathematical foundation played itself out in the public forum, with proponents for 
each side arguing the role of mathematics in statistics courses and the training of 
statisticians (e.g., Wilson, 1930). Hunter (1996) suggests that this is the beginning 
of a larger debate between two groups within the statistics community, “those begin-
ning to explore the theoretical aspects of statistics … [and those] using statistics as 

2 What Is Statistics Education?



40

a tool for work in other fields” (p. 14). This division would deepen over the next 
decade as statistics continued to free itself from other fields and become an indepen-
dent discipline in its own right. The schism between theory and application (which 
ultimately birthed mathematical statistics; see David, 1998; Neyman, 1976; Stigler, 
1996) was not unique to statistics and actually paralleled that taking place in math-
ematics (Craig, 1961).

The emphasis on mathematics was also taking place at universities outside the 
United States. For example, in a discussion at the Royal Statistical Society, Wishart 
points out that statistics was taught as part of the mathematical discipline at the 
University of Cambridge as early as 1931 and first awarded a diploma in mathemat-
ical statistics in 1948 (Pearson et al., 1955). In that article, Barnard and Bartlett 
reported similar emphasis within the statistics curriculum in the Universities of 
London and Manchester, respectively. In other countries, this shift didn’t occur 
until later. China, for example, introduced mathematical statistics in the 1950s 
(Shi-Jian, 1990).

The progress and growth of mathematical statistics during the 1930s and 1940s 
shifted the introductory statistics curricula toward the inclusion of more advanced 
methods (e.g., Snedecor, 1948). For example, advancements in sampling theory 
(e.g., Neyman, 1934, 1938; Yates, 1946), as well as correlational and regression 
techniques (e.g., Bartlett, 1933; Fisher, 1924–1925; Tolley & Ezekiel, 1923; Welch, 
1935), were all starting to be included in introductory courses. Additionally, by the 
early 1930s, Fisher developed analysis of variance as a practical method, and as 
Scheaffer (2001) so eloquently states, “(t)he influence of agriculture and Fisher on 
the maturing of statistics as a discipline cannot be overstated, and this influence 
permeates statistics education as well” (p. 2).

Rapid growth in the teaching, application, and use of statistical methods was 
coupled with a postwar influx of students in the undergraduate corridors (Bibby, 
1986a; National Research Council, 1947). As veterans returned to civilian life, many 
chose to enroll in technical programs, including statistics. Although the numbers of 
statistics students were rising, by the end of the decade, the number of trained stat-
isticians needed for industry positions far outpaced the applicant pool—which was 
sparse even before the war, causing many individuals and organizations to take 
notice (Balfour Committee, 1929; Cornell, 1945; Dwyer, 1945; Inman, 1990).

The proliferation of statistics courses and programs after World War II and a 
dearth in the number of trained and qualified users of statistics highlighted several 
challenges for statistics education, including the number of statistics programs that 
existed, the content that was/should be included in these programs, and how the 
programs were/should be organized (e.g., Hotelling, 1940; National Research 
Council, 1947; Pearson Committee, 1947). Questions about the preparedness of 
statistics teachers, as well as the growth in diversity and academic backgrounds of 
the students, were the focus of many of the publications of that period that addressed 
these challenges.

During this crisis, statistics education began to see a more organized effort from 
the broader statistical community, including the initiation of educational branches 
of the statistical societies and the formal development of undergraduate programs of 
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statistics at many colleges and universities. For example, the Statistical Training 
Programme for Africa (STPA) was initiated in 1978 after an evaluation of training 
programs revealed that the existing programs could not keep pace with the need for 
trained statisticians (Tulya-Muhika, 1990).

The statistics curriculum at the tertiary level continued to evolve during the late 
part of the twentieth century. John Tukey’s work on data analysis (Tukey, 1962, 
1977) revolutionized both the practice and teaching of statistics. This work, coupled 
with increasing access to computers, was integral in moving the emphasis of many 
statistics courses from mathematical theory to data analysis, opening up the field to 
a broader population of students. More recent reform efforts of statistics instruction 
will be described in later sections.

2.2.3  Milestones in Secondary-Level Statistics Instruction

It took some time and effort to introduce topics of statistics into the secondary cur-
riculum. Although probability was more connected to mathematics, the discipline in 
which statistics was eventually taught, these topics were not typically introduced 
until later in the twentieth century. From the turn of the century until the 1920s, the 
school-level mathematics curriculum in the United States, which was focused on 
algebra and geometry, was primarily geared toward preparing students for college. 
In 1929, the stock market crashed, and the resulting economic depression saw far 
fewer students attending college. As a result, schools shifted their educational focus 
to emphasize vocational and societal needs. During this time period, mathematics 
also became an elective subject, and subsequently schools worked to de-emphasize 
the sequential nature of the mathematics courses. This led to schools teaching new 
courses, a few of which began teaching statistics (Jones & Coxford, 1970).

The war effort of the mid-to-late 1940s brought a renewed emphasis to the study 
of mathematics at the school level. However, the content was aligned with the types 
of mathematics included on the induction test for the armed forces, again emphasiz-
ing algebra, geometry, and trigonometry. After the war, collegiate mathematicians 
expressed concern about the mathematical preparation of secondary students, and 
the College Entrance Education Board (CEEB) appointed a commission in 1954 to 
examine the mathematical needs of American students. One of the substantial rec-
ommendations made by the commission was to teach a course on probability during 
the last year of high school (Commission on Mathematics, 1959). Furthermore, the 
commission wrote a textbook for high school use, breaking with historic precedent 
of only making recommendations, and sanctioned a feasibility study of the 
curriculum.

As they also wrote the entrance examinations used for most colleges and univer-
sities, the CEEB’s recommendations had a great deal of influence on secondary 
curriculum, and statistics instruction became much more prevalent at the secondary 
level. Their recommendations also affected school curricula in Canada, with many 
provinces rewriting their mathematics curriculum and including the study of prob-
ability and statistics (Crawford, 1970).
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In the United Kingdom, virtually no probability or statistics was taught below the 
sixth form (ages 16–18; Green, 1982) prior to the 1960s. In 1959, the Organization 
for European Economic Co-operation organized a seminar on New Thinking in 
School Mathematics to take place at Royaumont, France. Eighteen countries par-
ticipated with discussion focused on the reform of school-level mathematics 
(Shubring, 2013). The ideas and recommendations that emerged from this seminar 
ended up initiating an international pedagogical movement for mathematics. They 
also influenced future curricular content. The curricular recommendations issued in 
the resulting report, which influenced several broad educational projects, included 
the teaching of probability and statistical inference at the school level. Three proj-
ects that drew on this recommendation were the United Kingdom’s School 
Mathematics Project, the Midlands Mathematics Experiment, and the Scottish 
Mathematics Group. All three curricular projects included statistical instruction, 
primarily the topic of probability, to students aged 11–16.

Throughout the 1960s, broad curricular projects addressing educational reform 
efforts continued to influence the mathematics taught at the secondary level. In 
1967, the American Statistical Association (ASA) and the National Council of 
Teachers of Mathematics (NCTM) formed the Joint Committee on the Curriculum 
in Statistics and Probability to provide leadership and support for curricular efforts 
in grades K–12. Frederick Mosteller, a statistics professor at Harvard and then presi-
dent of ASA, chaired the committee and was instrumental in many of its early suc-
cesses. The first product that came directly out of the joint committee’s efforts was 
Statistics: A Guide to the Unknown (Tanur et al., 1972), a book of solicited essays 
from statisticians positing the “value of statistics and probability and the contribu-
tions of these disciplines to the advancement of the biological, political, social, and 
physical sciences, as well as their usefulness in everyday life” (ASA, n.d.). The 
committee also produced a four-volume curricular series, Statistics by Example 
(Mosteller, Kruskal, Link, Pieters, & Rising, 1973), which included “real and inter-
esting instructional material for teachers in high school to use in courses in statistics 
and probability” (American Statistical Association, n.d.). Both of these products 
further democratized statistics education by presenting statistical topics and analy-
ses in an accessible manner to high school students and teachers.

John Tukey’s (1977) book on exploratory data analysis had a large impact on the 
curriculum at the secondary level as well, where previously, only topics in probability 
had been introduced within the mathematics curriculum. One set of curricular mate-
rials influenced by Tukey’s work was the Quantitative Literacy Project (QLP; see 
Scheaffer, 1990). QLP consisted of a series of books that were published in the late 
1980s, again, as a joint project between the ASA and the NCTM. Around this time 
period, NCTM published a yearbook completely devoted to the teaching of statistics: 
Teaching Statistics and Probability (Shulte & Smart, 1981). A second NCTM year-
book related to teaching statistics was published in 2006 (Burrill & Elliott, 2006).

A sign that statistics was becoming a recognized strand of the mathematics cur-
riculum was revealed in the Curriculum and Evaluation Standards for School 
Mathematics (NCTM, 1989). These comprehensive and ambitious standards out-
lined goals for quality mathematics instruction in the United States. This document, 
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which was influenced by a growing body of educational and psychological research 
that suggested that learning is an active, constructivist process and the changing role 
of technology in “doing” mathematics, called for increased instruction of statistics 
and probability at every grade level, K–12. The Standards, revised in 2000 (NCTM, 
2000), have had a lasting impact on mathematics instruction for K–12 students and 
have also influenced curricular change at the tertiary level as well.

Prior to NCTM’s success in publishing guidelines and standards detailing the 
role probability and statistics play in the mathematics curriculum, England success-
fully introduced statistics into their national secondary curriculum when the Schools 
Project in England published their report, Mathematics Counts (Cockcroft, 1982). 
This report was also famous for popularizing the term “numeracy.” Scheaffer (2003) 
points out that this report may have been instrumental in helping countries such as 
Australia, New Zealand, and the United States write and adopt standards.

As secondary instruction and curriculum changed to meet these new standards, 
many statistics educators began to reconsider the introductory statistics course at the 
tertiary level in light of these shifts. The conversations and questions about how this 
course was taught, and the content that should be included, were again rekindled. In 
the next section, we examine milestones that affected more recent reform of statis-
tics instruction at all educational levels.

2.2.4  Milestones in the Reform of Statistics Instruction

In the United States, the Mathematical Association of America organized a focus 
group to discuss and come up with recommendations for “reforming” the introduc-
tory college course. Cobb (1992) reported on the group’s work, offering three rec-
ommendations to reform the teaching of introductory statistics: (1) emphasize 
statistical thinking, (2) include more data and concepts (less theory, fewer recipes), 
and (3) foster active learning. Building on these recommendations, Moore (1997) 
characterized reform needs in terms of changes in content (more data analysis, less 
probability), pedagogy (fewer lectures, more active learning), and technology (for 
data analysis and simulations).

Roughly 10 years after Cobb’s report, the ASA funded a group of prominent 
statistics educators to write a set of instructional and assessment guidelines for 
teaching statistics at both the pre-K–12 and college levels. The resulting reports, the 
Guidelines for Assessment and Instruction in Statistics Education (GAISE; ASA, 
2005; Franklin et al., 2005), built on previous recommendations and reform efforts, 
as well as related curriculum standards to recent research on teaching and learning 
(see Franklin & Garfield, 2006). Both reports were endorsed by the ASA Board of 
Directors in 2005.

The pre-K–12 GAISE report focused on statistical literacy and laid out a statisti-
cal problem-solving framework across three levels based on students’ development 
in statistical literacy. This framework included four components: (1) formulating a 
question, (2) collecting data, (3) analyzing data, and (4) interpreting results. It also 
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encouraged teachers to focus on variation through all parts of the process. The col-
lege report provided six recommendations for the teaching and assessment of intro-
ductory statistics at the tertiary level: (1) emphasize statistical literacy and develop 
statistical thinking; (2) use real data; (3) stress conceptual understanding rather than 
mere knowledge of procedures; (4) foster active learning in the classroom; (5) use 
technology for developing conceptual understanding and analyzing data; and (6) 
integrate assessments that are aligned with course goals to improve as well as evalu-
ate student learning. In 2016, the college report was updated to “reflect modern 
practice and take advantage of widely available technologies” (ASA, 2016, p. 6). In 
addition to the earlier six recommendations, this report emphasizes teaching statis-
tics as an investigative process of problem-solving and decision-making and offer-
ing students experience with multivariable thinking.

Publication of the GAISE report inspired conversation and ideas. There have 
been sessions related to the GAISE report at major professional meetings such as 
the Joint Statistical Meetings, the Joint Mathematics Meetings, and the United 
States Conference on Teaching Statistics, every year since its publication. 
Additionally, many statistics teachers have developed courses that meet the recom-
mended guidelines and have shared these implementations at professional meetings. 
In the United States, the National Science Foundation has funded new curriculum 
projects that build on the recommendations and learning outcomes presented in the 
GAISE report (e.g., Garfield, delMas, & Zieffler, 2012; Gould, Davis, Patel, & 
Esfandiari, 2010; Tintle et al., 2015; West, 2014; Woodard & McGowan, 2012).

Although many of the reform efforts described here were initiated in the United 
States, the impact of these efforts was not limited to the United States. One country 
that has worked to actively reform their school-level curriculum is New Zealand. 
This is in large part due to David Vere-Jones, who not only influenced statistics 
education in New Zealand but also at the international level. He was instrumental in 
New Zealand’s recognition of statistical learning outcomes (e.g., statistical literacy) 
within the school curriculum (see Vere-Jones, 1995).

More recently, in response to the widening gap between statistical practice and sta-
tistics education, a group of New Zealand researchers and statistics educators developed 
innovative computer-based approaches for teaching statistical inference (Pfannkuch, 
Forbes, Harraway, Budgett, & Wild, 2013). They found that the use of randomization 
and bootstrap approaches, along with dynamic visualizations, has the potential to make 
concepts of statistical inference more accessible to students at the secondary and tertiary 
levels. New Zealand has also been a leader in the preparation of statistics educators, 
preparing them to teach methods of data handling and data visualization, as well as 
simulation methods of inference (Forbes, Campos, & Helenius, 2013).

One of the most successful contributions to statistics education at the secondary 
level has been the United Kingdom’s Census at School project. This project engages 
grade 4–12 students with statistics by having them complete an online survey, ana-
lyze their class results, and compare them with results from other populations such 
as students in their own country and in other countries (American Statistical 
Association, 2017a). The Census at School project has also been adopted in several 
countries around the world (e.g., Australia, Canada, Ireland, Japan, New Zealand, 
and South Africa).
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2.3  Professional Organizations and Journals Related 
to Statistics Education

Professional organizations/societies and journals within any discipline are essential 
for generating and sharing ideas and information. They help build energy within a 
professional community and provide recognition and support for members of the 
community. In this section, we describe some of the more prominent organizations/
societies and journals dedicated to statistics education.

2.3.1  Organizations and Societies

Over time, the demand for statistics education and training has impacted many pro-
fessional statistical organizations. Currently, almost all of the national statistical 
societies around the world explicitly include statistics education as part of their 
mission (e.g., Canada, India, Japan, New Zealand, the Philippines, South Africa). 
Some of these associations have initiated more formal committees or special inter-
est groups dedicated to statistics education, which in turn have influenced the teach-
ing of statistics. As an example, the New Zealand Statistical Association’s statistics 
education committee has actively worked to include topics of data analysis at the 
primary and secondary school levels and to integrate the visionary work of statistics 
educators such as Chris Wild and Maxine Pfannkuch (see Wild, Pfannkuch, Regan, 
& Horton, 2011) into the school curriculum. They have also promoted the use of 
technology and graphical visualization in the teaching of data handling and problem- 
solving within the school curriculum.

In addition, many of these organizations sponsor projects, organize conference ses-
sions, and offer participants networking opportunities specifically related to the teach-
ing and learning of statistics. Three statistical organizations, the International Statistical 
Institute, the Royal Statistical Society, and the American Statistical Association, have 
long histories of supporting efforts in statistics education, and are highlighted below.

2.3.1.1  International Statistical Institute and the International 
Association for Statistical Education

The International Statistical Institute (ISI) formed a Committee on Statistical 
Education in 1948 to undertake educational activities in statistics and to collaborate 
with UNESCO and other UN agencies for this purpose (Vere-Jones, 1995). This 
committee was established on the advice of Dr. Stuart Rice, then President of the 
ISI, who was a strong advocate of statistics education. His 1949 paper, Furtherance 
of Statistical Education (Rice, 1949), would form the basis for the ISI’s involvement 
in statistical education for the next several decades.

In the late 1970s, the ISI Committee on Statistical Education set up a number of 
task forces including the Task Force on Teaching Statistics at School Level 
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(TOTSAS) and the Task Force on International Conferences in Statistical Education. 
TOTSAS, initially chaired by Vic Barnett, established a regular newsletter available 
to interested school and university teachers of statistics. It also established the jour-
nal Teaching Statistics, which saw its first issue published in 1979. TOTSAS was 
also responsible for the publication of Teaching Statistics in Schools Throughout the 
World (Barnett, 1982), a survey of the “state of affairs” of statistics in preuniversity 
settings (e.g., where statistics was taught, example syllabi, etc.) around the world. It 
also published a companion volume, The Training of Statisticians around the World 
(Loynes, 1987).

The ISI Committee on Statistical Education became an official section of the ISI 
in 1991 and changed its name to the International Association for Statistical 
Education (IASE). Although its name changed, its focus remained that of improving 
the teaching and learning of statistics and advancing research in statistics education 
(Schuyten & Ottaviani, 2006). To carry out this mission, the IASE hosts a repeating 
4-year cycle of professional meetings, (1) International Conference on Teaching 
Statistics (ICOTS), (2) Satellite and ISI Biennial, (3) Roundtable, and (4) Satellite 
and ISI Biennial. IASE also sponsors an International Statistical Literacy Project 
(ISLP) which includes international poster and project competitions.

2.3.1.2  Royal Statistical Society

In the United Kingdom, there is a long history of support for statistics education in 
the schools. One organization that has played a key role is the Royal Statistical 
Society (RSS). Initially interested in promoting the teaching of statistics at the col-
lege and university levels (e.g., RSS, 1947; Wishart, 1939), especially after World 
War II, the RSS was instrumental in including the teaching of statistics in the sec-
ondary school curriculum in England. Holmes (2003) gives a descriptive account of 
this history in his paper, 50 Years of Statistics Teaching in English Schools: Some 
Milestones.

Pointing out the impact the RSS had on statistics education in the United 
Kingdom and maybe more broadly, Neville Davies (personal communication, 
March 20, 2016) writes:

…the RSS was the first academic and professional statistical body to give sustained support 
for statistical education through budgeted funding (for its Centre) from 1995 to 2014. It 
gave overt and valuable backing for what it gradually came to believe to be a discipline in 
its own right. This support did, in fact, follow from the establishment of the first centre for 
statistical education based at Sheffield from 1982–1995, although the RSS had no involve-
ment in that period at Sheffield.

The RSS continues to be involved with statistics education. In 2010 they 
acknowledged the coming of age of statistical education as a discipline when Chris 
Wild and his colleagues read a paper to the society (later published as Wild et al., 
2011). This is noteworthy given that education-related papers are rarely published 
in RSS journals. The RSS also currently sponsors a campaign (getstats) which 
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involves statistical literacy initiatives and resources to help teachers, journalists, and 
the general public to increase their statistical knowledge.

2.3.1.3  American Statistical Association

In the United States, the American Statistical Association (ASA) also increased its 
support of statistics education during the middle of the twentieth century. In 1947, 
ASA formally constituted and made the Committee on Training Statisticians the 
Section on Statistical Training. Although the choice of “training” rather than “edu-
cation” was at the time deliberate, in 1972, Robert Hogg proposed changing the 
name of the section to the Section on Statistical Education. In 1973, when Hogg 
chaired the section, a new charter was submitted with the name change and approved 
by the section members that same year. See Inman (1990) for a lengthier history of 
the Section on Statistical Education. In addition to providing meeting space for 
statisticians interested in education, having a formal section also ensured that ses-
sions related to statistical education would be included at the annual Joint Statistical 
Meetings.

Hogg continued to make statistics education a priority in the ASA. In 1991, he 
offered to be the program chair for the upcoming ASA winter meeting (Randles, 
2007). The meeting, held in January of 1992 in Louisville, Kentucky, had a theme 
of statistics education. This meeting included over 600 participants (around 200 of 
whom were students) and resulted in collaborations that would impact statistics 
education for years to come (e.g., Cobb, 2013; Rossman & Garfield, 2011). Utts 
(2015) synthesizes many of the ASA’s contributions to statistics education and also 
offers descriptions of their more recent contributions.

2.3.1.4  Professional Organizations in Mathematics

Several prominent professional organizations in mathematics also support statistics 
education. At the international level, the International Mathematical Union has long 
supported statistics education via its International Commission on Mathematical 
Instruction (ICMI). Statistics education researchers from around the world gather 
quadrennially at the International Congress on Mathematical Education (ICME). In 
2008, the ICMI hosted a joint study with the IASE—Statistics Education in School 
Mathematics—Challenges for Teaching and Teacher Education (Batanero, Burrill, 
& Reading, 2011).

In the United States, statistics education has also been supported by the large and 
prestigious Mathematical Association of America (MAA). In addition to forming 
the focus group on the introductory course, chaired by George Cobb, which inspired 
the aforementioned GAISE reports, the MAA has published several books in their 
Notes Series on teaching statistics (e.g., Garfield, 2005; Moore, 2000), has spon-
sored workshops for mathematicians who teach statistics, and hosts a Special 
Interest Group in Statistics Education.

2 What Is Statistics Education?



48

2.3.2  Journals

The presence of journals that publish scholarship in a particular field helps legiti-
mize any discipline. There are currently four journals that are devoted primarily to 
statistics education. The oldest of these journals, Teaching Statistics, has been pub-
lished since 1979 and consists of brief articles, activities, and research reports. 
Although based in the United Kingdom, the scope and reach of this journal are 
international, and its prestige has grown over the years as the journal changed in 
format, content, and scholarship.

The second oldest of the four journals, the Journal of Statistics Education (JSE), 
was established in 1993. Prior to this time, Teaching Statistics was the only domain- 
specific journal that published material related to statistics education. JSE was 
started to provide a peer-reviewed publication outlet for scholarship in statistics 
education and also to introduce innovation and curricular reform (Dietz, Gabrosek, 
Notz, & Short, 2013). In addition, JSE was the first electronic journal in statistics, 
having been published online since its inception.

The Statistics Education Research Journal (SERJ), a peer-reviewed, free elec-
tronic research journal of the IASE, made its debut in 2002, although its roots can 
be traced back to 1982 at the first International Conference on Teaching Statistics 
(ICOTS). At this meeting, the idea was kicked around to start a study group of 
researchers interested in statistics education, and the International Study Group for 
Research on Learning Probability and Statistics was born. In 1987, Joan Garfield 
took over as secretary of the study group from David Green—who had just become 
editor of Teaching Statistics—and wrote the group’s first newsletter (Garfield, 
1987). The newsletter was a catchall for information related to statistics education, 
including lists and, sometimes, descriptions of current published research, informa-
tion about events and professional conferences, and other noteworthy tidbits. Efforts 
by two key figures in the international world of statistics education, Carmen 
Batanero and Maria Gabriella Ottaviani, convinced the IASE to include the study 
group as a special interest group and turn the newsletter into a regular publication. 
The newsletter officially changed names to the IASE Statistical Education Research 
Newsletter (SERN) in January of 2000. About this same time, a discussion began 
within the IASE about the problems, methodologies, and results that were stem-
ming from statistics education research. This discussion, much of which was docu-
mented in SERN (e.g., Bacelar-Nicolau, 2001; Batanero, Garfield, & Ottaviani, 
2001; Batanero, Garfield, Ottaviani, & Truran, 2000; Ottaviani, 2000), led to the 
establishment of SERJ. This journal is now published twice a year and continues to 
be sponsored by the IASE and ISI.

Technology Innovations in Statistics Education (TISE) is the newest publication 
to disseminate high-quality scholarship and research related to statistics education. 
It is an electronic journal founded by Rob Gould, which publishes research and 
other scholarship related to the use of technology to teach statistics at all educa-
tional levels, from kindergarten to graduate students and professionals. Unlike the 
other journals in statistics education, this journal is not affiliated with a professional 

A. Zieffler et al.



49

organization, but, rather, is produced by the University of California, Los Angeles, 
whose statistics department has a strong commitment to improving education.

In addition to these four journals, there are also several journals (not specific to 
statistics education) that occasionally publish statistics education-related articles. 
For example, since its inception in 1947, The American Statistician has published 
many articles and special issues on topics such as the undergraduate curriculum, the 
teaching of Bayesian statistics in an introductory course, and the training of gradu-
ate teaching assistants. This journal also includes a regular section, called Teacher’s 
Corner, comprised of peer-reviewed articles related to teaching statistics, primarily 
at the tertiary level.

The International Statistical Review has also published articles related to statis-
tics education. These articles (some of which have been landmark articles in the 
field) have covered topics such as statistical thinking, assessment, literacy, and 
research on teaching and learning statistics (e.g., Garfield, 1995; Garfield & Ben- 
Zvi, 2007; Moore, 1997; Wild & Pfannkuch, 1999). International research journals 
in mathematics education such as Mathematical Thinking and Learning, 
Mathematics Education Research Journal, Journal for Research in Mathematics 
Education, and Educational Studies of Mathematics have published articles and 
special issues on research related to teaching and learning statistics. Some exam-
ples of these special issues include The Role of Context in Developing Reasoning 
about Informal Statistical Inference (Makar & Ben-Zvi, 2011) and Statistical 
Reasoning: Learning to Reason from Samples (Radford, 2015). In addition to the 
professional journals, some international handbooks produced by the mathematics 
education community have included comprehensive and influential syntheses of 
research that have contributed greatly to the shared knowledge base in statistics 
education (e.g., Langrall, Makar, Nilsson, & Shaughnessy, 2017; Shaughnessy, 
1991, 2006).

It must be noted that, despite the prevalence of journals oriented specifically 
toward publishing scholarship on the teaching and learning of statistics, there are 
still questions about the legitimacy of these journals. For many faculty pursuing 
tenure and promotion in a department of mathematics or statistics, more weight is 
given to publication in discipline-specific journals, where scholarship related to 
theory is often emphasized over that related to teaching. Even for faculty in depart-
ments or programs geared toward mathematics education, publication in the statis-
tics education journals may carry less weight.

2.4  The Current Landscape of Statistics Education

In many countries, statistics is taught, to some degree, at almost all educational 
levels, with most of the extended teaching of the subject occurring at the secondary 
and tertiary levels. At the secondary school level, the teaching of statistics generally 
takes place within the mathematics curricula, whereas at the tertiary level, statistics 
is taught across many disciplines and departments, including mathematics, 
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engineering, psychology, sociology, public health, economics, and, of course, statis-
tics. Over time, this diversity has led to questions about where statistics should be 
taught, the content that should be included, and who should be teaching it (e.g., 
Moore, 1988; Moore & Cobb, 2000).

Despite 20+ years of grappling with some of these questions, there is still abun-
dant variation in the content and setting of statistics courses. This variation has 
become more apparent as the societal need for statistically literate citizens and a 
more statistically trained workforce increases and as we face an increasingly edu-
cationally diverse population of students in the classroom. To meet these chal-
lenges, statistics educators have primarily focused on updating the content and 
pedagogy in the classroom. The statistical content taught in schools is continually 
impacted by the changes in the practice and scope of the underlying discipline 
(see Chap. 1). For many years, the topics typically included in an introductory 
statistics course taught at the secondary or tertiary level included data collection, 
data representation, data summary, probability, and inference (Watson, 2006). 
This scope and sequence mirrored the basic process of analysis undertaken by 
practicing statisticians. Recently, advances in computing, which have had a major 
influence on statistical practice, have also led to changes in the classroom. For 
example, many instructors are using simulation methods to teach statistical infer-
ence and including more statistical modeling in their classrooms (e.g., Cobb, 
2007; Garfield et al., 2012).

Statistics educators are also adopting pedagogical innovation such as activity- 
based learning, flipped classrooms, and collaborative learning that promotes student 
learning. These changes typically reflect the ideas that emerge from research on the 
teaching and learning of statistics (see Chap. 3). Many of these methods, ideas, and 
research are shared through the organizations, journals, and conferences described 
previously.

In the following sections, we explore the current landscape of statistics educa-
tion at different educational levels. We first examine statistics education at the 
primary and secondary levels, focusing on the scope of content taught at these 
levels around the world, the standardized assessments that affect that content, and 
improving instruction via collaboration. We follow this up by examining statistics 
education at the tertiary level. There, we look at recommendations and reform 
around the undergraduate statistics major, and also at current thoughts about the 
introductory courses. Finally, we examine how statistics education is being uti-
lized in the workplace.

2.4.1  Statistics Education at the School Level

Currently, there is a great deal of variation between countries in the role statistics 
plays in the primary and secondary curriculum. Some countries have nationally 
mandated curricula; others have a national curriculum on paper but no consistent 
implementation; and others have no national curriculum. One commonality across 
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countries is that statistics content is frequently taught within the mathematics cur-
riculum. For example, in Uganda, statistics is taught as part of applied mathematics 
(Opolot-Okurut & Eluk, 2011). In Ethiopia, statistics is taught as one of the five 
strands of mathematics (Michael & O’Connell, 2014), and in the Philippines, basic 
probability and statistics concepts are also taught within the mathematics curricu-
lum (Reston & Jala, 2014). England also teaches statistics within their mathematics 
curriculum, but an inquiry by Smith (2004) recommended that statistics should be 
embedded in application subjects and taught by teachers of those subjects where it 
is applied. Ultimately, the government retained statistics instruction within the 
mathematics curriculum, a decision supported by the RSS (Porkess, 2011).

Recently there have been increased efforts worldwide to include statistical con-
tent at the primary, as well as, the secondary school level. For example, Australia 
set standards for learning statistics across all primary and secondary school years 
(Australian Curriculum, Assessment and Reporting Authority, 2013). Similarly, 
the New Zealand curriculum includes standards for teaching statistics as early as 
Year 1 of primary school (Ministry of Education, 2007). Ethiopia has also recently 
expanded statistics instruction from one unit taught in the grade 12 curriculum to 
include content throughout the K–12 experience (Michael & O’Connell, 2014). In 
contrast, school curriculum in the United States does not typically address statisti-
cal content until grade 6 (Watson, 2014), despite recommendations by the 
American Statistical Association to include statistical content earlier in the school 
curriculum (Franklin et  al., 2005). The Common Core State Standards in 
Mathematics (Common Core State Standards Initiative, 2017) adopted by 42 out 
of 50 states as of May 2017 will, however, introduce ideas of data and measure-
ment as early as grade 3.

As statistics is taught more widely throughout the school experience, profes-
sional organizations, governments, and universities have begun to collaborate to 
promote the teaching and learning of statistics. The Iranian Statistical Society, for 
example, along with the Isfahan Mathematics House, and the Mathematics Teachers’ 
Society of Isfahan formed an annual team-based statistics competition for Iranian 
high school students. These organizations also collaborated on the development of 
a website in Farsi to promote the popularization of statistics (Parsian & Rejali, 
2011). In the Philippines, these types of collaborations have led to the development 
of teaching materials—such as reference material for elementary school teachers to 
illustrate uses of statistics and secondary- and tertiary-level introductory statistics 
textbooks—as well as the implementation of a nationwide course to train teachers 
in probability and statistics (Reston & Bersales, 2011).

Not only is statistics included earlier in students’ educational trajectories, but the 
scope of statistical content taught at the school level is arguably larger than it ever 
has been. For example, the middle school curriculum in France, which was once 
limited to a few methods of calculation and graphs, has expanded to include infer-
ential topics such as sampling variability, probability, and simulation (Bihan-Poudec 
& Dutarte, 2014).

The availability of cheaper and more powerful technological tools has also 
broadened the scope of statistical content that is taught at the school level. For 
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example, the prevalence of the graphing calculator in the 1990s made analysis (e.g., 
exploratory data analysis inference) more accessible for students, which in turn 
allowed more of this content to be included at the school level. More recently, access 
to more powerful computers has led New Zealand and the United States to use 
simulation methods to introduce statistical inference at the secondary grade levels 
(Forbes et al., 2013; Wild et al., 2011; Wild, Pfannkuch, Regan, & Parsonage, 2017).

Technology is not the only thing that influences curriculum at the school level. 
Curriculum is also influenced by a country’s educational goals. One goal in many 
countries is the need to have a more statistically literate citizenry (e.g., Biggeri & 
Zuliani, 1999; Gal, 2004). Brazil, for example, emphasizes statistical reasoning as 
part of the civic formation of students (Campos, Cazorla, & Kataoka, 2011). In 
South Africa, statistical content is taught with the goal of preparing students for 
social and economic needs they will face as adults (Wessels, 2011).

Student performance on international assessments can also be a catalyst for 
broadening or streamlining school-level curriculum. Two such assessments, the 
Trends in International Mathematics and Science Study (TIMSS; Mullis & Martin, 
2013) and the Programme for International Student Assessment (PISA; OECD, 
2013), include a variety of statistical content questions (e.g., interpreting and repre-
senting data from graphs and charts, comparing characteristics of data sets, using 
data to make inferences) and have influenced several countries’ curricular choices. 
Japan, for example, had removed most statistics content from their secondary-level 
curriculum in the early 2000s but, after their students performed poorly on the 2012 
PISA, decided to re-expand their coverage of statistics (Fujii, Fukazawa, Takeuchi, 
& Watanabe, 2014). Poor student performance on PISA’s statistical tasks also 
prompted Germany to emphasize data analysis and statistical reasoning at all grade 
levels of their national mathematics curricula (Martignon, 2011).

2.4.2  Statistics Education at the Tertiary Level

At the tertiary level, there are two primary sets of student stakeholders: (1) those 
pursuing a degree in statistics (major or minor) and (2) those who take statistics 
courses but are pursuing a degree in another field. In the United States, the number 
of students in both groups seems to be steadily increasing (Blair, Kirkman, & 
Maxwell, 2013; Bryce, 2002). Statistics educators have identified teaching and cur-
ricular challenges for both groups of students. Below, we attempt to describe both 
groups of students and some of the between-country variation in these students. We 
also identify some of the curricular challenges and considerations that arise in 
teaching statistics to these groups of students.

From 2010 to 2013, statistics was the fastest-growing undergraduate degree in 
science, technology, engineering, and mathematics (STEM) in the United States 
(ASA, 2015b), and this growth is not unique to the United States. However, whereas 
several countries have seen an increased interest in statistics as an undergraduate 
focus of study, there is still a great deal of between-country variation in the preva-
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lence of the statistics major. For example, Richardson (2014) compared statistics 
majors at universities in Australia, Vietnam, and the United States and found that 
while many of the colleges and universities surveyed in Australia and the United 
States offer a statistics major, only four of the 50 colleges and universities surveyed 
in Vietnam offered a major in statistics. She also found variation in the content and 
requirements of statistics majors across countries. For example, she reports that in 
Vietnam about 45% of the courses for statistics majors are focused on mathematics 
and statistics, whereas in Australia and the United States, it is closer to 70%. This 
might be because most statistics majors in the United States and Australia are 
offered in mathematics departments.

Because of these differences, countries face several unique challenges. Recognizing 
the vast differences in the structure and content of the statistics major across institu-
tions (even within a country), some professional statistical organizations have begun 
to consider how to provide more uniformity. In 1999, the American Statistical 
Association launched the Undergraduate Statistics Education Initiative (USEI) to 
focus organizational efforts, write guidelines, and provide marketing and continual 
support for undergraduate statistics programs within the United States. More recently, 
they also endorsed a set of curriculum guidelines for Undergraduate Programs in 
Statistical Science (ASA Undergraduate Guidelines Workgroup, 2014) that provides 
curricular suggestions about content and pedagogical considerations for colleges and 
universities that include a major, minor, or concentration in statistics. In Japan, where 
there were no statistics departments until 2014 (Kudo et al., 2014), the Japan Statistical 
Society recently wrote a set of certificate examinations for students and statisticians 
at many levels, from junior high to graduate level (Fujii et al., 2014).

While the number of students specializing in statistics at the tertiary level is pro-
ducing more sophisticated data analysts—able to get a variety of jobs in business 
and industry—there is also more demand for students trained in other disciplines to 
understand basic ideas of data and chance and to be able to apply those concepts to 
their own area of study. The 2010 Conference Board of the Mathematical Sciences 
survey indicates that the enrollments in introductory statistics courses and upper- 
level statistics courses have both increased since 1995 (Blair et al., 2013). However, 
for many students pursuing a degree in a field other than statistics, especially those 
pursuing a non-STEM degree, the introductory course remains their only under-
graduate exposure to statistics. As such, statistics educators have posed many ques-
tions about the goals, content, and instruction of this course. Below, we examine 
some of the goals, both cognitive and non-cognitive (e.g., attitudinal), that statistics 
educators have identified for this group of students.

Cognitive Goals. The GAISE guidelines (see Sect. 2.2.4) present one set of 
learning goals for students at the precollege levels and another set for those students 
at the tertiary level. In addition, statisticians involved in education have also pro-
vided their perspectives on what introductory statistics students should learn and 
understand about statistics. These are typically based on their own reflections about 
what they consider to be statistical concepts for educated citizens (e.g., Scheaffer, 
2001; Utts, 2003, 2010).
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Goals for introductory statistics students are often related to data and design. For 
example, these might include the design of an investigation, plan and collection of 
data, the exploration and comparison of observations, and the appropriate use of 
statistical inference (e.g., College Board, 2010). In addition, statistics educators 
have promoted goals of developing students’ statistical literacy, statistical reason-
ing, and statistical thinking rather than rote skills, computations, and procedures 
(e.g., ASA, 2005; Batanero et al., 2011). Despite the fact that statistics educators 
commonly refer to statistical literacy, reasoning, and thinking, there is little agree-
ment in statistics education scholarship about the operationalization of these out-
comes. For example, Garfield and Ben-Zvi (2008) describe statistical literacy as 
being able to read and use basic statistical language and graphical representations to 
understand statistical information in the media and in daily life, whereas Gal (2002) 
argues that statistical literacy also encompasses the ability to critically evaluate and 
communicate statistical information and conclusions.

Non-cognitive Goals. Changing students’ beliefs and attitudes about statistics, 
improving students’ dispositions and motivation for studying statistics, and reduc-
ing students’ anxiety about the subject have all been identified as goals in tertiary- 
level statistics courses (Wikipedia, 2016). Statistics education researchers have 
examined many of these non-cognitive outcomes for tertiary-level statistics stu-
dents, often using specially designed instruments such as Student Attitudes Towards 
Statistics (Schau, Stevens, Dauphinee, & Del Vecchio, 1995).

Gal and Ginsburg (1994) recommend that statistics educators be aware of their 
students’ reactions and feelings toward statistics, as they may have an effect on 
student learning. It is widely acknowledged that many students enter a statistics 
course with apprehension toward the subject, which works against their efforts to 
learn the material. Part of the problem is that many students experience mathematics 
anxiety and equate statistics with mathematics. In addition to overcoming anxiety 
and negative attitudes, certain dispositions (e.g., curiosity and awareness,  skepticism) 
are needed in order to be successful in statistical work (Wild & Pfannkuch, 1999).

2.4.3  Statistics Education in the Workplace

Outside the classroom, the workplace is another common venue where statistical 
training and education take place. For example, many companies in the United 
States train their employees in quality control and improvement techniques (e.g., 
Six Sigma; Montgomery & Woodall, 2008). The workplace also offers a rich envi-
ronment for statistics education researchers (e.g., Bakker, 2014; Bakker & 
Akkerman, 2015; Bakker, Kent, Derry, Noss, & Hoyles, 2008).

Many professions are also adopting more evidence-based practices and decision- 
making strategies; policy organizations, government, and healthcare are three 
examples. To better meet these needs, organizations like Statistics New Zealand 
(Janssen & Forbes, 2014) have developed a set of initiatives to enable them to make 
better decisions using data. Similarly, Awe and Vance (2014) describe Virginia 
Tech’s Laboratory Interdisciplinary Statistical Analysis, which trains statisticians 
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and scientists from third-world countries to communicate and collaborate with non- 
statisticians to make better evidence-based decisions.

2.5  Challenges and Opportunities in Statistics Education

Statistics education has changed a great deal since 1982, but there are still several 
issues and challenges that educators face in developing a statistically literate citi-
zenry. Concerns about reproducibility of research (Peng, 2015; Wasserstein & 
Lazar, 2016), recent emphasis on data manipulation and computing (ASA 
Undergraduate Guidelines Workgroup, 2014), and abundance and variation in the 
types of data available for analysis (Gould, 2010) will all likely play a role in chang-
ing how statistics is taught. In this section, we outline several opportunities and 
challenges on the horizon for statistics education.

2.5.1  Technology

Technology has had, and will probably continue to have, the greatest impact on the 
teaching of statistics. Advances in technology have made the computation in statis-
tics courses both more accessible and more accurate. This has reduced the amount 
of time statistics instructors need to spend on procedures, which allows for more 
time to be focused on statistical concepts (Chance, Ben-Zvi, Garfield, & Medina, 
2008). For example, even the most basic statistical software makes the computation 
of confidence intervals and p-values trivial, and rather than devoting class time to 
reading and using statistical tables, such as the z and t tables (which are now obso-
lete), time instead can be devoted to students’ understanding and interpretation of 
the values obtained. Technology tools are also being used to help students visualize 
and understand statistical concepts such as samples and p-values (e.g., via simula-
tion; Biehler, Ben-Zvi, Bakker, & Makar, 2013).

More than just changing the method of computation or focus of learning within 
the statistics curriculum, technology has actually changed the curriculum itself. For 
example, entire statistics courses have been created around visualization methods, 
Monte Carlo simulation (Tintle et al., 2014; Zieffler & Catalysts for Change, 2013), 
and Bayesian methods (Albert & Rossman, 2009). These methods, which once were 
only possible with the computing power of a mainframe, can now even be taught at 
the introductory level.

Technology has also provided increasingly sophisticated tools to change the 
mode and environment in which statistics is taught. For example, many universities 
are exploring and expanding their capacities to teach statistics in an online environ-
ment. In addition to the universities, for-profit companies and institutions such as 
SAS, RStudio, and Statistics.com are also offering statistics courses and training 
online.
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To meet the demand for statistics instruction, universities such as Johns Hopkins 
and Stanford have adopted online platforms (e.g., Coursera, iTunesU) to help facili-
tate course enrollments of several thousands of students. These platforms use tech-
nology to aid in course administration and student feedback to make these large 
enrollments possible. For example, Carnegie Mellon’s Open Learning Initiative 
features an online virtual tutor that gives immediate and targeted feedback to stu-
dents (Lovett, Meyer, & Thille, 2008).

It is important to note that technology has also allowed for greater access to 
teaching materials and scholarship related to statistics education. For example, 
CAUSEweb, the Consortium for the Advancement of Undergraduate Statistics 
Education’s website, is a comprehensive web repository that provides a multitude of 
peer-reviewed resources and professional development opportunities (such as webi-
nars) for statistics instructors (Consortium for the Advancement of Undergraduate 
Statistics Education, 2017). In addition, CAUSE sponsors the biannual United 
States Conference on Teaching Statistics, as well as two electronic conferences: The 
Electronic Conference on Teaching Statistics and the Electronic Undergraduate 
Statistics Research Conference. The IASE has posted many valuable links and 
resources on their website, including past conference and roundtable proceedings, 
recent dissertations in statistics education, and relevant conferences and meetings, 
as well as an extensive website of resources for the previously mentioned 
International Statistical Literacy Project (IASE, 2017a, 2017b). The ASA Center for 
Statistics Education also hosts several websites with resources for teachers includ-
ing many activities and lesson plans (e.g., ASA, 2017b, 2017c).

2.5.2  Pedagogy

Recommendations for the teaching and assessment of introductory statistics have 
been clear that instructors need to adopt a less lecture-dominated classroom when 
teaching statistics (ASA, 2016; Saxe & Braddy, 2015). Student-centered pedagogi-
cal methods such as active learning, flipped classrooms, and project-based learning 
are potential alternatives to the traditional lecture format. At the elementary and 
secondary levels, some educators have used the perspective of learning environ-
ments to provide a holistic integration to the teaching of statistics (see Chap. 16).

Active learning methods are an alternative to a lecture-based classroom. The use 
of active learning or student discovery in teaching is not unique to the statistics 
classroom. And, in general, recommendations for teaching statistics draw heavily 
from evidence accumulated from the broader fields of psychological and educa-
tional research. Several examples of using active learning for teaching statistics are 
readily available, including recent curricular efforts by Chance, Wong, and Tintle 
(2016), Garfield et al. (2012), and Rossman and Chance (2013).

Another student-centered approach to instruction is the use of a flipped class-
room. In a flipped classroom, students read content or watch videos outside of class 
and then spend class time working with other students on the material. There has 
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been some evidence that tertiary-level students in introductory statistics courses that 
use the flipped classroom approach have had better performance and attitudes than 
students in comparable lecture-based courses (e.g., Wilson, 2013; Winquist & 
Carlson, 2014).

The use of student projects is another pedagogical method for creating a student- 
centered classroom. Not only can projects help students see statistics as a valuable 
part of the investigative process of problem-solving and decision-making (ASA, 
2016), but they can also provide instructors with a more authentic manner in which 
to assess students’ broader understanding of statistics (e.g., Fillebrown, 1994; 
Zeleke, Lee, & Daniels, 2006).

As awareness of these instructional recommendations spreads, it is important to 
examine how responsive statistics instructors are to calls for change. Ten years after 
the “Cobb Report” was issued, Garfield, Hogg, Schau, and Whittinghill (2002) sur-
veyed statistics instructors to determine the extent to which reform efforts were 
impacting the introductory course. The results suggested that very little had changed 
in the teaching of statistics outside of an increased use of technology. More recently, 
a survey of introductory statistics instructors at the tertiary level revealed that many 
instructors are engaging in recommended practices, such as having students use 
technology, assessing conceptual knowledge, and using real data. However, the 
results also indicated that most instructors continue to use lecture as the predomi-
nant method of content delivery, not using recommended pedagogical practices 
such as use of collaborative activities that encourage students to experience and 
construct concepts (Fry & Garfield, 2015; Garfield, delMas, Zieffler, & Fry, 2015). 
When asked why, many instructors reported hesitation or resistance to make changes 
in content delivery because of constraints such as personal time limitations and 
student characteristics.

2.5.3  More Statistics at the School Levels

We continue to see more and more statistical contents trickle down to the school- 
level curriculum. In the United States, the Common Core State Standards include 
more statistics content than most schools have previously taught. Countries like 
Australia, Ethiopia, Israel, and New Zealand are also increasing school-level expo-
sure to statistics content. This expansion of the statistics curricula is also coupled 
with the success of programs such as the Advanced Placement (AP) program, in the 
United States, which offers tertiary-level curricula to secondary school students. As 
part of the AP program, students can opt to take an examination, which if they score 
well on, can earn them course credit at some colleges and universities. This pro-
gram, which started in 1997, has had prolific success, administering 7500 exams in 
its inaugural year and 185,000 exams in 2014 (Rossman, 2015, personal communi-
cation), a roughly 25-fold increase! Histories of the development of AP Statistics 
are offered in Roberts, Scheaffer, and Watkins (1999) and Franklin et al. (2011).

2 What Is Statistics Education?



58

As more statistics is taught at the school level, there are many questions about the 
amount and type of statistical content that should be taught at these levels. For 
example, many of the more recent Statistical Reasoning, Thinking, and Literacy 
(SRTL) international research forums have focused on informal statistical inference 
and statistical modeling (SRTL, 2017), and several participants were engaged in the 
study of students’ and teachers’ reasoning about these ideas at the school level (e.g., 
see Zieffler & Fry, 2015). There are also open questions about how the tertiary con-
tent will have to change to accommodate students that have already learned most of 
what is currently covered in an introductory postsecondary course in statistics. 
Finally, and perhaps most importantly, there are questions about the preparedness of 
teachers at the primary and secondary levels to teach this content. It is there that we 
turn next.

2.5.4  Teacher Preparation and Development

Issues of how to prepare and support teachers at all educational levels continue to 
be of major importance in statistics education (see, e.g., Batanero et al., 2011). At 
the primary and secondary levels, teachers, many of whom have never studied sta-
tistics, need to be prepared to teach the expanded statistical content now included in 
the curriculum. Even mathematics teachers, who generally have some statistics 
training in their background, will need additional preparation and professional 
development beyond their mathematical training. This might include development 
of their statistical content knowledge and instruction on the use of appropriate tools 
and technology, as well as on educationally recommended pedagogical methods for 
teaching statistics (e.g., active learning, use of student projects, etc.) (see also 
Chaps. 12 and 13).

In some countries, collaborations exist among different entities (e.g., govern-
ment institutions, professional statistics associations, academic institutions, private 
organizations) to train teachers to teach statistics. For example, the Iranian Statistical 
Society, along with the Iranian Association of Mathematics Teachers’ Societies, 
convinced the Iranian Ministry of Education to add a statistics course in the national 
high school curriculum in order to promote statistical literacy. Professional organi-
zations along with the ISS organized lectures and workshops throughout the country 
to train mathematics teachers to teach statistics and provided various resources 
(Parsian & Rejali, 2011). In the Philippines, individuals, universities, the govern-
ment, and private organizations have all worked together to prepare teachers to 
implement a revised school curriculum, which includes statistics and probability 
(Reston & Bersales, 2011). Reform efforts have also included the reviews of locally 
written textbooks, grants for writing reference books, and forums for presenting 
research in statistics.

Universities in different countries have also responded to the need to train future 
statistics teachers. For instance, Froelich (2011) describes a new curriculum in sta-
tistical content for future secondary mathematics teachers at a large university in the 
United States. The curriculum engages future teachers with data collection and 
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analysis, probability, and inferential statistics and emphasizes similarities and dif-
ferences between mathematics and statistics. Similarly, Green and Blankenship 
(2013) developed an introductory statistics course for preservice elementary teach-
ers to help emphasize the importance of statistics in the elementary curriculum. In 
Germany, six Universities of Education have collaborated to have future teachers 
participate in regular seminars on both statistical and pedagogical content knowl-
edge (Martignon, 2011). In addition, some German states include statistical ques-
tions on data analysis and visualization in their teaching certification examinations.

One challenge in teacher development, to date, has been the lack of guidance 
about the statistical content that teachers should be prepared to teach. Although 
previous reports, such as the Mathematical Education of Teachers Report 
(Conference Board of the Mathematical Sciences, 2012), documented the impor-
tance of statistical training for mathematics teachers, there was no specific guidance 
about content. In April of 2015, the ASA published the Statistical Education of 
Teachers (SET; American Statistical Association, 2015a), in which the statistical 
training of K–12 teachers was more defined. This document emphasized the need 
for teachers to understand content that extends beyond the level they teach. The SET 
document outlines specific topics and concepts for teachers at each of these levels 
and advocates for at least one statistics course for teachers that integrates both con-
tent and pedagogical knowledge.

There are also several other challenges that have been documented related to 
teacher development. For statistics teachers in many countries, their undergraduate 
coursework has not prepared nor supported them in becoming effective teachers of 
statistics. Whether this is due to outdated content knowledge (Reston & Jala, 2014), 
lack of pedagogical training (Sorto, 2011), or economic conditions that constrain 
the available resources to train teachers (Muñoz, Arañeda, Sorto, & León, 2014), 
these challenges pose real problems for many countries where statistics has become 
a focus of the curriculum in both primary and secondary schools.

In response to these challenges, many countries have implemented professional 
development opportunities for their in-service and preservice teachers. For exam-
ple, Reston and Jala (2014) report on the use of workshops in the Philippines that 
promote reflective practice intended to help improve the teaching practices of statis-
tics teachers. Similarly, Muñoz et al. (2014) write about the curricular materials that 
have been developed to expose Chile’s future elementary teachers to more statistical 
content and improve their knowledge related to statistics. Although professional 
development for preservice and in-service teachers appears to offer a short-term 
method of improving the teaching of statistics, more preparation and study are 
needed to develop statistics educators who can lead the field forward.

2.5.5  Graduate-Level Study in Statistics Education

Although graduate students have, for some time, been completing doctoral research 
that focuses on the teaching and learning of statistics (many dissertations are archived 
on the IASE website; IASE, 2017b), it is only in the last decade that universities have 
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developed graduate-level courses, research seminars, and specialized research men-
toring in statistics education. Certification programs are another way in which educa-
tors engage in graduate-level training. The RSS offered a Certificate in Teaching 
Statistics in Higher Education which was a unique postgraduate qualification to pro-
vide personal development for teachers of statistics in tertiary-level institutions.

The University of Minnesota initiated the first formal graduate program in statis-
tics education in 2002. Prior to that, there were no institutions that offered a master’s 
degree and/or Ph.D. in statistics education. Since that time, other institutions in the 
United States have also developed a graduate program in statistics education (e.g., 
University of Florida, Portland State University, University of Georgia). Depending 
on the institution, these programs are located either in statistics departments or in 
education departments. In addition, graduate students at a variety of universities 
around the world continue to complete dissertations involving statistics education 
research (e.g., Open University, The Netherlands; Pontificia Universidade de Sao 
Paulo, Brazil; University of Granada, Spain; The University of Haifa, Israel). As 
requirements for doctoral degrees vary from country to country, most programs 
where students write a dissertation in statistics do not actually include coursework 
or seminars in this area.

In 2009 the ASA approved a set of guidelines for graduate programs in statistics 
education (ASA, 2009). It is noteworthy that these guidelines include the need for 
expertise in the content of statistics, the practice of statistics, the teaching of statis-
tics, and the methods of conducting educational research. These guidelines also 
recommended that graduate committees for students conducting research on the 
teaching and learning of statistics include faculty from both education and statistics 
departments.

2.6  Conclusion

It is exciting to see statistics embraced by the public and popularized in the media, 
in part due to people such as Hans Rosling and Nate Silver. Rosling’s lectures for 
Technology, Entertainment, Design (TED) feature colorful graphics and dynamic 
data representation to tell stories of complex multidimensional data. Rosling is also 
one of the founders of Gapminder (2017), a nonprofit venture to increase people’s 
use and understanding of statistics and other information about social, economic, 
and environmental development throughout the world. American writer Nate Silver 
gained visibility for himself and for statistics when he accurately predicted the out-
come of the 2008 US presidential election in 49 out of 50 states. Silver is currently 
the editor in chief of ESPN’s FiveThirtyEight blog, which publishes articles analyz-
ing statistics information in politics, economics, and sports (ESPN, 2017).

Statistics also gained visibility worldwide in 2013, during the International Year 
of Statistics. This initiative was sponsored by hundreds of organizations and insti-
tutes around the world, including the International Statistical Institute, which was 
also one of the initiators of this handbook. The International Year of Statistics had 
the goals of raising public awareness, introducing young people to statistics careers, 
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and promoting creativity in statistical science. As part of this initiative, a website 
was launched with information to educate the public about the discipline of statis-
tics, information about careers in statistical sciences, and resources for teachers of 
statistics (ASA, 2017d).

As the proliferation of data increases and the importance of data-based decisions 
becomes more widely recognized, there will most likely be even more of a demand 
for statistically literate citizens. The challenges to the statistics education commu-
nity to stay current will also increase due to the rapidly changing discipline of sta-
tistics as well as the advent of several new data science programs and degrees 
(Swanstrom, 2017).

It is incumbent on statistics educators, now more than ever, to continue to ensure 
that students are being taught effectively, with an emphasis on learning. Technology 
will continue to transform the statistics curriculum and statistical learning environ-
ment, and statistics educators must be willing to adopt promising pedagogical and 
curricular innovation. This means that researchers need to continue to study these 
innovations, paying particular attention to the mechanisms and supports underlying 
successful classroom implementation. Additionally, professional organizations and 
conference organizers need to continue to support educational efforts and teacher 
development, not only through funding but also by making resources and materials 
available and accessible.

We also hope that the trend toward student-centered classrooms and pedagogy 
extends to statistics courses beyond the introductory course. As data science and 
statistics programs develop and expand their student base, it will be critical that we 
not only evaluate our teaching efforts in these advanced courses but also that we are 
studying the integration of these courses with the introductory course. Data science 
has the promise of attracting students from many different domains and back-
grounds. As such, we also need to monitor the education pipeline, to work toward 
inclusion of students rather than exclusion.

The knowledge and experience accumulated to date by the statistics education 
community, along with published priorities and guidelines, have set statistics educa-
tion up for a bright future. With institutions developing new programs and courses, 
the field should continue to grow and improve, promoting more and higher-quality 
research and providing a solid, recognized foundation for the discipline of statistics 
education.
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Chapter 3
Statistics Education Research

Peter Petocz, Anna Reid, and Iddo Gal

Abstract This chapter sketches in broad strokes and critically examines several 
aspects of the world of research that pertain to the teaching, learning, understand-
ing, and using of statistics and probability in diverse contexts, both formal and 
informal. It reflects on the methods and conceptual schemes that underlie the 
research activity in this field (the how), the topics being researched (the what), and 
the people carrying out the research (the who). The chapter examines purposes and 
motivations for different types of studies in statistics education, distinguishing 
between large-R research that often aims for academic reporting and generalizabil-
ity versus small-r types of research whose motivation is more on local problems set 
in a particular context. We illustrate some trends in the field by presenting empirical 
results from an exploratory qualitative analysis of the text of a body of papers and 
publications in the field. The chapter points out that the range of what qualifies as 
research in (or of relevance to) statistics education is much broader than what gets 
published in leading journals and conferences in our field. It highlights the multi-
plicity of philosophical foundations and methodologies in use. Some directions for 
future development and research are outlined, including aspects of statistical liter-
acy, cultural dimensions of statistics education research, the role of practitioner 
inquiry, and the importance of broad interdisciplinary research in statistics 
education.
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3.1  Introduction

In this chapter, we take a broad overview of the field of research of relevance to 
statistics education in order to highlight some overall trends and approaches. We 
aim to reflect, albeit in a somewhat personal way, on three broad questions related 
to the how, what, and who of statistics education research, that is, the methods and 
conceptual schemes that underlie some of the research activity in this field, the top-
ics or issues being researched, and the people carrying out the research.

Despite the diversity in the identity of the researchers, or the targets of their curi-
osity and motivation, research work is of relevance to us (i.e. to the area of statistics 
education) if it has the potential to contribute to the field of statistics education and 
enhance in some way the ability of learners or adults to think or reason about statisti-
cal or probabilistic situations or act in a statistically literate way. This is enabled by 
the fact that what is being investigated relates in some way to the basic building 
blocks around which teaching, learning, and using statistics and probability revolve. 
After all, there are common features stemming from the big ideas and core concepts 
that make statistics a unique field (see Chap. 1, this volume) and (should) permeate 
all levels and contexts of instruction or usage (see Chap. 2, this volume). This is the 
case, for instance, for ideas related to variability and distribution; uncertainty, prob-
ability, error, and risk; sampling and generalization; modelling and data reduction; 
inference, prediction, and causality; existence of methods for exploring and repre-
senting notions of distribution, centre, dispersion, or association in diverse ways such 
as in via texts, tables, numbers, or graphs and dynamic visual displays; and many 
more (see, e.g. Moore, 1990; Moore & Cobb, 2000, for additional examples).

The idea of what is being investigated is powerful, as a clear definition of what 
leads intuitively and practically to how it could be explored. A particular feature of 
statistics education research is that the disciplinary content or the pedagogical con-
text may also inform the method deemed suitable for investigation. In some con-
texts, for some people, it may seem very natural to investigate aspects of learning 
statistics using a statistical (quantitative) approach. The extension of this idea is that 
the method of investigation is predetermined and so needs no discussion, or even the 
view that any alternative method of investigation is in some way inferior to the sta-
tistical method. Pedagogical research in (say) chemistry may tend to favour a quan-
titative approach, and in (say) history may tend to favour a qualitative approach. 
However, in no discipline other than statistics is there such an immediate link 
between the subject matter under investigation and the methodology that may seem 
appropriate for the investigation—even if that subject matter is statistics education. 
That said, the actual range of methodologies used in research of relevance to statis-
tics education is broad and goes well beyond those normally used by professional 
statisticians who engage in the practice of statistics.

This chapter is organized in several sections. We start by reiterating, and criti-
cally examining, a distinction between the hallmarks that identify educational 
investigations as reportable research (we refer to these as ‘large-R research’) and 
other forms (which we refer to as ‘small-r research’) that are not primarily aimed at 
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publication as research, though they may be described in journals or conferences 
focusing on statistics education. In putting forward this distinction, it is not our 
intention to valorize the large-R research or to disparage the small-r research. On 
the contrary, we believe that both types have an important role to play in statistics 
education research generally, and their combination results in a more detailed over-
all picture than would be obtained following the more conventional approach of 
excluding the small-r results on the basis that they do not meet some criterion of 
research quality.

To inform some of our ideas, we report selected results from an exploratory 
analysis of a corpus of contemporary publications in the field of statistics education 
research, using the qualitative research package NVivo. Following a brief overview 
of this investigation, we next provide a general discussion of research philosophies 
(too often omitted in written descriptions of research results; see also Chap. 11 on 
theories in statistics education research, this volume), including an example of the 
multiplicity of these perspectives in the context of research on statistical literacy. 
With the above as a backdrop, in the remainder of this chapter, we continue to look 
closely at the three linked aspects, the how, the what, and the who of research in 
statistics education. Our approach is based on our conceptual investigation of the 
topics of statistics education research on the one hand and our empirical investiga-
tion of the artefacts of statistics education research on the other. We also discuss why 
some of the objects of research have been selected and the way in which the selected 
approaches fit particular learning, social, and cultural situations. We then close with 
discussion and conclusions.

The field of statistics education research provides us with an opportunity to 
explore the value of research approaches that are typically used by statistics educa-
tors and understand how this field is unique and at the same time generic. Overall, 
the chapter aims to inform beginning researchers and scholars, yet also to be of 
interest to more seasoned researchers, by offering a reflective yet critical assessment 
regarding the evolution of the field of statistics education research.

3.2  Background

3.2.1  Distinguishing Types of Research

Evans (2010) gives a useful guide to what can be seen to as academic research. He 
points out that the practice must be integrated within a strategy that is purposive 
(based on the identification of an issue or problem worthy and capable of investiga-
tion), inquisitive (seeking to acquire new knowledge), informed (conducted from an 
awareness of previous, related research), methodical (planned and carried out in a 
disciplined manner), and communicable (generating and reporting results which are 
testable and accessible by others). Evans’ guide highlights characteristics of research 
that can well be applied to the field of statistics education research. Purposive 
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research allows us to situate the research in the societal context of the problem—for 
instance, some research is situated in the context of ensuring that, as part of the final 
outcome of schooling, future citizens and workers are able to access and understand 
statistical information presented numerically or graphically, whereas other research 
is situated in the context of the goal of developing formal knowledge and technical 
skills of future professional statisticians. Purposive research is based on knowledge 
of the field and the selection of appropriate methods to perform the investigation. 
An outcome of purposive research is that new knowledge should be acquired and 
promulgated. The nature of the problem and its identification also demonstrate the 
epistemological position that the researchers have taken, and the epistemological 
position generates the research approach.

That said, although both large-R and small-r research may be purposeful, one of 
the purposes of most large-R research is generalization, whereas small-r research 
more commonly (though not always) focuses on localized issues. Thus, small-r 
researchers may not necessarily have an explicit intention to generalize results and 
publish them to a wider community. Examples are the case of a practitioner who 
studies their own practice, an official statistics agency exploring the degree to which 
users understand a certain statistical product (e.g. consumer price index) and are 
satisfied with the explanations given on an agency website, or an internal formative 
evaluation process that is conducted as part of funded research that involves learn-
ing or using statistics, such as a project in the area of science education.

Another key common thread between both the small-r and large-R research 
problems is curiosity. Such curiosity motivates the people who carry out the research, 
and at the same time it defines an object of research. For instance,

• Educators may become curious about the way in which children develop statisti-
cal understanding or about the impact of factors such as family conditions, cur-
riculum materials, type of instruction, or use of technology on learners’ 
comprehension.

• Lecturers may be interested in how the attitudes or backgrounds of tertiary (or 
college) students affect their performance, how to improve the teaching-learning 
process, or students’ ability to apply their knowledge in professional situations.

• Managers may notice what statistical messages or risk information may be mis-
understood by workers or service recipients and wonder how to improve 
comprehension.

• Researchers in a certain discipline may be curious about the factors affecting the 
statistical thinking and behaviour of their respondents.

The curiosity on the part of teachers, professionals, or researchers is what initi-
ates and enables research of relevance to statistics education. In some cases, educa-
tors may decide to explore something in their classroom that could make an 
immediate impact for a specific group of students. In others, broader conceptual and 
practical problems generate a prolonged investigation of some rather complex 
learning, cultural, and statistical issues. Selected examples can be found in many of 
the chapters in this handbook, which explore in depth some objects of research that 
have been established as critical concepts in statistics education, often highlighting 
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the scholars or research groups who are carrying out the research. Other chapters 
explore some of the common research methods and approaches that statistics educa-
tors use in their investigations of particular areas or topics.

3.2.2  Distinguishing Types of Researchers

In this chapter, we call the people involved in statistics education research for brev-
ity ‘statistics education researchers’, though this term is simplistic. In fact, there are 
very diverse types of people and groups involved in research in statistics education. 
Here are key examples (though others do exist); some may have commonalities or 
overlap, but overall they illustrate many differences:

 (a) Traditional forms of research that focus on statistics education processes or 
outcomes in formal education contexts such as schools or tertiary institutions

 (b) Localized practitioner-based research in which a single teacher or a group 
within a single school decide to examine their own practice in a systematic way, 
not necessarily with the hope of generalizing

 (c) Broader practitioner-based research, possibly by teachers in academia or at a 
graduate level, who collaborate across multiple sites on studying the reactions 
to or benefits from a certain innovation such as a new teaching method, a new 
assessment system, or a digital application

 (d) Practical research conducted by producers of statistics (e.g. official statistics 
agencies) or educational actors who operate outside formal education contexts 
(e.g. trainers needing to improve how workers understand data on quality of manu-
facturing or service processes), aiming to inform localized decision-making

 (e) Formative research about ongoing educational interventions or applied projects 
that involve some statistics, such as programme evaluations or surveys of stu-
dents and/or teachers in the area, aiming to inform further planning and execu-
tion of the programme

 (f) Research conducted by scholars from other disciplines who investigate a spe-
cific issue of relevance to the learning or teaching of statistics or probability yet 
do not necessarily have statistics education as their main focus but instead aim 
to inform issues of interest in another discipline such as mathematics education, 
science education, psychology of judgement and decision-making or risk com-
munication, health education, or educational technology

3.2.3  Surveying the Landscape: An Empirical Analysis

How does one go about investigating the how, what, and who aspects that underlie 
the research activity in statistics education? Other chapters in this volume each 
focus on a single selected subarea and explore insights from research results in this 
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regard. In this chapter, however, our aim has been to provide an overview of the 
whole field regarding the how, what, and who questions, going above and beyond 
selected subareas, as important as they are.

Using the qualitative research package NVivo 10, we have investigated a corpus 
of contemporary publications in the field of statistics education research. Since we 
wrote the first version of this chapter in 2015, we chose to base our analysis on a 
half-decade of articles published from 2010 to 2014 inclusive. We collected all the 
papers published in the Statistics Education Research Journal (SERJ), the Journal 
of Statistics Education (JSE), and the Technological Innovations in Statistics 
Education (TISE). We also included the ‘invited’ (though not the ‘contributed’) 
papers presented at two recent International Conferences on Teaching Statistics 
(ICOTS 8 in 2010 and ICOTS 9 in 2014) and published on their conference websites 
and papers from several Satellite Conferences and Roundtables organized by the 
International Association for Statistical Education (IASE) and available via its 
website: http://iase-web.org/Conference_Proceedings.php.

This approach led to a collection of 653 papers: a body of papers not without 
limitations but also with some advantages. Firstly, it includes those that deal with 
various aspects of statistics education as well as statistics education research, as we 
did not go through a process of selecting only those that were focused on research. 
That way, we intentionally kept the small-r research papers as well as the large-R 
research papers, since we believe that both types are important. The inclusion of 
proceedings from two ICOTS conferences in a 5-year period biases the selection 
towards conference papers, though at the same time it highlights the international 
diversity and practitioner-led research that are amongst the features of these key 
conferences. Further, the sources listed above are not the only places where research 
in statistics education is published; for instance, we have not examined the (much 
larger) body of research in mathematics education to identify studies focusing on 
statistics education. A search through several mathematics education research jour-
nals for the period 2010–2014 revealed only a small number of papers on statistics 
education research. In seven leading journals we found a total of 20 such papers, 
including nine in a special issue of a single journal (see Makar & Ben-Zvi, 2011). 
Despite their important disciplinary contribution, the actual number of such papers 
is too small to have any noticeable effect on the overall results of this analysis. 
Although the coverage of our collection of articles is not complete, it does represent 
a coherent and inclusive corpus of literature for investigation.

NVivo allowed us to search through the complete text of this collection of arti-
cles using a variety of search terms derived initially from the combined contents of 
all the papers and focused specifically on the aspects of research approach and 
method. Despite its limitations, our analysis was purposeful. We tried to illustrate 
what is found within a sensible but constrained search space, in order to inform our 
own writing of this chapter. The collection of 653 articles gives a comprehensive 
view of the world of discourse in statistics education and statistics education 
research over a recent half-decade—a view that has not been previously reported in 
the literature on statistics education.
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3.3  Defining the Philosophies

Ontology, or ‘ways of being’, and epistemology, or ‘ways of knowing’, are at the 
core of all research. A paradigm is constituted of ontology, epistemology, method, 
forms of analysis, discipline of research, and interpretation. An ontological perspec-
tive focuses the researcher’s attention on the essence of something or the existence 
of something—for instance, the essential meaning of variability or the nature of a 
statistical approach to a problem or to life in general. An epistemological perspec-
tive seeks to understand how people come to know something—for instance, how 
they learn about different types of averages or the discipline of statistics as a whole. 
Researchers need to consider the nature of the thing that they are investigating, and 
understanding the interrelationships between the ontology and epistemology pro-
vides a powerful tool that guides our research practice. For instance, Petocz and 
Reid (2010) highlight the importance of the ontological aspect of becoming (and 
being) a statistician, in addition to the epistemological aspect of learning about 
statistics, in the process of statistics education. Many researchers, however, are 
unaware of these distinctions and take a rather more naturalistic approach to their 
investigations, and this can account in some cases for the distinction between small-
 r and large-R activity. Statistics education researchers need to be aware of their 
assumptions about the nature of statistical knowledge so that they can appropriately 
carry out their investigations in ways that are reliable and valid. To start to explore 
this idea, we will think about some extremes in the nature of knowledge. For statisti-
cians, positivism is an idea that is core to the discipline.

3.3.1  Positivism

Scotland (2012) suggests that positivism has its basis in realism. That is, things exist 
and have an intrinsic value, and the role of the researcher is to find that intrinsic 
value and describe it. Hence, data that are factual in nature reside in this realm. 
Ways of exploring this knowledge create an epistemology that is founded on the 
collection of objective facts and the provision of an analysis that is about the object 
of research and therefore free of cultural subjectivity. Some aspects of this view of 
research were challenged by the post-positivists (see Popper, 1959), who pointed 
out that every question is determined by a person, and every finding can be critiqued 
or questioned. What could be considered objective in an ontological sense can also 
be considered subjective. This perception brings into view the notion that a 
researcher and research question are part of a social construction of knowledge and 
curiosity. A mountain can still exist without a person thinking about it, but the 
moment that they do think about the mountain, then they bring to the thought their 
own experience and social history.

The main strength of a positivist (and post-positivist) approach to research is that 
it seeks to find testable causes for a situation that can be explained through 
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relationships between things. For statistics education researchers, and researchers in 
education generally, this can result in definite answers to specific questions, in a 
form that is aligned with standard scientific approaches and methods, and can sat-
isfy the requirements of funding agencies. Whole research programmes can be set 
up using such a positivist framework. For instance, members of the American 
Statistical Association set forth guidelines for research in statistics education for 
introductory college-level statistics. Pearl et al. (2012) gives a comprehensive list-
ing of research classified into six main areas, with research priorities and questions 
for each area, and a short statement of the benefits that would result from knowing 
the answers to these questions.

Methodologies that are associated with this form of research include survey 
instruments, experiments with controls, standardized tests, etc. Analysis of the data 
that come from these methods includes descriptive or inferential statistics that can be 
generalized to broad populations. An important aspect of this form of research is that 
it can be replicated to produce results that should be similar. For instance, a researcher 
may want to explore how students react to a different teaching method designed to 
help students understand probability. A pretest could be administered to two classes 
to gauge their current knowledge of probability. One class could have the different 
teaching method applied and the other class not. In the end, a post-test will determine 
which group actually understood probability in a better way than the other.

A detailed description of such an approach is presented in the SMER Report 
‘Using Statistics Effectively in Mathematics Education Research’ (ASA, 2007). 
However, as that Report points out, for statistics education researchers, a strict sci-
entific approach can be problematic. For example, in a learning environment, con-
trolled conditions are rarely possible. Students are allocated to classrooms or lecture 
groups in a non-random way; they have learning experiences that include interac-
tion with students from other classes and with other materials; ‘treatment’ may only 
be possible class by class, and the notion of single or double blind is usually com-
pletely unfeasible. Unlike other experimental designs in some other areas, it is 
nearly impossible to replicate educational studies in other learning environments. 
Statistics education researchers who base their research on a positivist approach 
need to be aware of the inherent limitations.

The approach taken here is familiar from the broader scientific context, for 
instance, a clinical trial to investigate the effect of a drug versus a placebo. Aspects 
of such a clinical trial that are considered important scientifically include random 
assignment to treatment or placebo group, (single or double) blinding to avoid bias 
on the part of the subjects and the experimenters, and the possibility of replicating 
the trial with another group of subjects. This produces the so-called gold standard of 
scientific research that is held up as ideal in some contexts. There are numerous 
examples for expectations or standards in this regard (e.g. Shelley, 2005 discusses 
the US Government’s 2001 legislation to foster scientifically valid research in edu-
cational research).

Hill and Shih (2009) have examined the quality of research in mathematics edu-
cation, based on an analysis of 10 years of articles in the Journal for Research in 
Mathematics Education (JRME). Using criteria suggested by several well-known 
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professional associations, such as the American Educational Research Association, 
American Psychological Association, and National Council for Measurement in 
Education, or the American Statistical Association’s report on using statistics in 
mathematics education research (ASA, 2007), these authors have found that the 
majority of JRME articles reporting on quantitative research were lacking in one or 
more respects.

3.3.2  Social Constructivism

A completely different way of thinking about knowledge is that it is constructed 
socially. The ontological position is that knowledge is relative and open to interpre-
tation. Relativism is an idea that acknowledges the different ways that reality is 
perceived from person to person (Guba & Lincoln, 1994, p. 110). Unlike positivism, 
where things have an intrinsic quality, a socially constructed view indicates that it 
has been given meaning through a person’s interaction with it and other things. On 
the whole, socially constructed knowledge can be seen as subjective rather than 
objective as in the positivist paradigms. This way of viewing things brings with it 
quite a different epistemology. Now, ways of knowing are based on both individual 
and social experiences. All people experience things, and experience things 
uniquely. Individual life experiences are unique and cannot be replicated across 
cultures and time. However, it is a characteristic of people to be curious and inten-
tionally seek to understand and experience things in a different way. Small children 
notice variation in the way that adults make sounds and how it differs from their 
own attempts. They notice that their mouths and tongues move in different ways 
when they try to replicate those sounds, eventually they notice that the sounds have 
order and create meaning, and finally they learn to speak. In every human enter-
prise, noticing variation is the way that we learn.

Statistics education researchers are experts at noticing variation. It is at the core 
of their discipline and usually encountered using more positivist activities. When it 
comes to understanding learning, teachers notice immediately if there are more girls 
than boys in their class, or if the students are young or old, or dark- or fair-haired, 
or whether they are local students or come from another country or background. 
These are easy observations to make, and they assist the teachers to understand the 
social situation in which they find themselves. However, it is harder to notice varia-
tion in the way that people think. It is here that statistics education researchers are 
often curious. To explore aspects of their students’ learning, educators need to use 
methods that enable students (or participants) to explain their experience. Interview 
studies, case studies, talk-aloud protocols, narrative inquiry, phenomenology, etc. 
all fit into this paradigm. Where these (and other) methods differ is in their episte-
mology—the way in which knowledge is formed. Further discussion on such issues 
and illustrations regarding the use of qualitative methods to inform statistics educa-
tion can be found in Petocz and Reid (2010), Gal and Ograjenšek (2010), and many 
other sources.
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Taking a narrative inquiry approach, a statistics education researcher may look at 
curriculum documents, text books, exam papers, and student diaries to come to an 
understanding of how students experience probability. Taking this approach, the 
researchers can investigate why curriculum authors think it is important for students 
to learn about probability, how it is presented in textual material, how it is made 
appropriate to different age groups and cultures, how students experience it inside 
and outside the classroom, and how students may start to use probability as a way 
of thinking in daily life or as part of a more scientific enterprise. The intended out-
come of the research is knowledge regarding student experience, with the intention 
of finding more effective ways of working with such students.

A phenomenological approach would be distinctly different from narrative 
inquiry. Such an approach aims at providing a rich description of an individual’s 
experience of probability (for instance). The researcher may use interviews, videos, 
discussion groups, observations, diaries, blogs, etc. The purpose of the data collec-
tion is to provide a ‘thick description’ of the individual experience. The outcome is 
to use the description to understand other similar individuals and situations through 
noting variation and similarity. A key characteristic of the approach is that it focuses 
on the individual as a creator of knowledge and legitimizes the authority of that 
knowledge.

3.3.3  Critical Theory

Critical theory provides an alternative ontology and epistemology that can be of use 
to the statistics education researcher. This theory extends beyond positivist as well 
as interpretive approaches, as it takes account of the history, politics, and society in 
which people create knowledge. Knowledge is seen as inherently political as it 
reflects the values that people place on it. From this perspective, epistemology 
includes gender (feminism, queer theory), culture (Marxism, Confucianism), liberty 
(self-determination, poverty), critical economics or peace studies, etc. Scotland 
(2012, p. 11) says:

As it is culturally derived, historically situated and influenced by political ideology, knowl-
edge is not value free. The critical paradigm asks the axiological question: what is intrinsi-
cally worthwhile? Thus, the critical paradigm is normative; it considers how things ought to 
be; it judges reality. The utopian aspirations of the critical paradigm may never be realized 
but a more democratic society may materialize.

Critical theory can be applied to both positivist and constructivist paradigms. An 
example within the (post-)positive paradigm could be the graphical investigations 
on the Gapminder website (see www.gapminder.org) of various aspects of contem-
porary society, for instance, the relationship between education of girls/women and 
population growth. The graphs demonstrate that in countries where a greater pro-
portion of girls are educated, there is a lower rate of births per woman, and this 
relationship can be visualized over time. An example within the constructivist 
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paradigm could be Vita and Kataoka’s (2014) investigation of modifying teaching 
sequences and materials to help blind students in their learning of probability. Their 
study illustrates their acknowledgement of their students’ diversity and their ethical 
concern to provide learning opportunities for them that are appropriate to this diver-
sity. Several other articles, and maybe even the complete special issue, in this vol-
ume of the Statistics Education Research Journal (SERJ, 13(2)) highlight aspects of 
critical theory.

3.3.4  Example: Applying Different Approaches to Statistical 
Literacy

The idea that knowledge based on research results (including from quantitative 
research) is socially constructed, and that statistical statements made by researchers 
or statistics producers are legitimate targets for a critical process, underlies the moti-
vation to develop the statistical literacy of future and current citizens (Gal, 2002a). 
This is now evident in many curriculum frameworks around the world. However, 
research on statistical literacy by itself can take different forms, both positivistic and 
interpretive.

Some researchers in the area of statistical literacy focus on obtaining quantitative 
or quantifiable evidence regarding ability to critically interpret statistical messages, 
using quantitative methods such as tests with multiple-choice items or by employ-
ing rubrics for coding responses to open-ended tasks (e.g. ability to recognize flaws 
in a media article with statistics). Numerous examples for such approaches appear 
in SERJ and other sources we analysed, for instance, Hobden’s (2014) work on the 
level of statistical literacy proficiency of pre-service teachers in understanding sta-
tistics about HIV/AIDS in South Africa. Such quantitative studies, and theoretical 
models on which they are based (e.g. Watson & Callingham, 2003), are valuable in 
helping to document ability levels of different target groups of interest or the impact 
of using certain interventions.

However, researching the inner change process that learners’ undergo as they 
develop the ‘critical lens’ that is part of statistical literacy requires different and less 
direct approaches. Action research, critical discourse analysis, phenomenography, 
and some other approaches that use open-ended questioning techniques or ‘think 
aloud’ cognitive protocols may be useful in this regard. The need for such methods 
is in part due to the need to simultaneously document changes in both cognitive and 
attitudinal systems (Gal, 2002b). In addition, the critical perspective being adopted 
by the learners, by its very nature, may be perceived differently by the researcher 
and by those being researched (i.e. the learners undergoing the change). Hence, to 
understand how statistical literacy develops, there is a need to include participants 
as co-researchers, recognizing that researchers and participants provide equally 
legitimate contributions to the research object. This in turn implies a need to work 
with relatively mature populations of participants, who can take part in a co-creation 
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process where they are both learners and collaborators in a reflective process with 
the researchers. An example is recent work by Brantlinger (2014), who engaged 
adult students taking a night class in the critical interpretation of a chart portraying 
the white student to student-of-colour ratio at various schools and how these corre-
lated with recess time received by students. The participants not only reflected on 
the value of this activity as an educational task but also on the extent to which it 
enables the researcher to understand their own perspectives.

In moving from positivist or socially constructed to critical theoretical approaches, 
the role of a considered stance to the ethical aspects of research becomes more 
prominent; this is as true in statistics education research as in any other area. There 
are ethical aspects to any research, even if the epistemology is scientific and positiv-
ist. Yet in that case, the search for the truth is often accepted as the most important 
feature of the research, and any problematic aspects related to the ‘subjects’ or even 
the experimenters themselves are often seen to be secondary. With the socially con-
structed epistemologies, the role of the people involved in the investigations 
becomes more central. The ethical aspects of how they are treated and how their 
evidence is used become an integral part of the research. Appreciating the ethical 
aspects of research enables the researcher to work sympathetically and carefully 
with any subject/participant group. In the statistics education context, this is impor-
tant as, for instance, any group of students that is involved in research is also likely 
to be the recipient of the outcomes of the research, as some aspect of their learning 
situation is likely to change. The critical epistemologies problematize the ethical 
dimension further, and include consideration of the possible negative consequences 
of participation in research projects, and the ultimate ownership of the resulting 
research, including the right to veto any further use of material obtained and even 
knowledge uncovered.

3.4  Reflections and Evidence on the How, the What, 
and the Who

3.4.1  Methods Commonly Used by Statistics Education 
Researchers (the How)

In this section we will investigate the range of methods, approaches, and method-
ologies used by contemporary statistics education researchers. The body of evi-
dence is the 653 articles from SERJ, JSE, and TISE and the invited papers published 
on the websites of the ICOTS 8 and 9 and IASE satellite and round table confer-
ences from the period 2010–2014. These articles were selected to cover a broad 
range of writings in the field of statistics education research, published in the high-
est profile journals and conferences in the field, and included small-r as well as 
large-R research writing. The selection makes no claims to being complete (though 
we believe that it is quite comprehensive), nor to being a random sample, nor was it 
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weighted in any way to represent issues, researchers, or quality; the results should 
be read with this in mind.

NVivo enabled us to investigate references to a variety of methodological 
approaches using a number of search terms. These terms were selected from an 
initial examination of the full text of all the articles based on our aim to examine 
their research methods and approaches. The following search terms were selected 
and used:

General: research approach, research method(ology), ontology, epistemology.
Quantitative approaches: questionnaire, factor analysis, structural equation 

model.
Qualitative approaches: content analysis, constructivism, focus group, action 

research, lesson study, content knowledge, interview (study), reflective practice, 
phenomenology.

Other terms such as regression, hypothesis test, and analysis of variance could 
also be taken to indicate quantitative research approaches, but investigation of the 
articles that used these terms revealed that they were overwhelmingly references to 
statistical techniques that were being taught and/or learned; this was not the case for 
the other quantitative terms.

The profile of terms and the number of papers in which they were used indicated 
that the majority of the articles did not make explicit reference (using our terms) to 
philosophical background of the research method or approach that was used. For 
instance, ‘research method’ and ‘research approach’ were mentioned in only 114 
and 18, respectively (121 for either term, 19% of the 653 papers), while the terms 
‘epistemology’ and ‘ontology’ occurred in only 49 and 5 of them (51 for either, 
8%).

Specific markers of quantitative approaches were ‘questionnaire’ (123 articles), 
‘factor analysis’ (42), and ‘structural equation model’ (31); a total of 154 articles 
(24%) included at least one of these terms. Markers of qualitative approaches 
included ‘interview’ (177 articles), ‘content knowledge’ (94), ‘constructivism’ (34), 
‘focus group’ (28), ‘action research’ (21), ‘content analysis’ (15), ‘reflective prac-
tice’ (9), ‘phenomenology’ or ‘phenomenography’ (9), and ‘lesson study’ (7); a 
total of 283 articles (43%) included at least one of these qualitative marker terms.

Overall, these results suggest that around a quarter of the papers (24%) gave 
evidence of quantitative approaches, and almost half (43%) gave evidence of quali-
tative approaches. A total of 358 papers (55%) made reference to at least one of 
these qualitative or quantitative markers, and 79 papers (12%) referred to both qual-
itative and quantitative markers—a possible indication of ‘mixed methods’ 
approaches, though the term ‘mixed methods’ itself occurred in only 21 of the 
papers (3%).

This summary presents a profile of statistics education research in which almost 
half of papers have no explicit discussion about research approach or research 
method, and very few of them make any reference to the philosophical aspects of 
such methods, though some of these may have done so implicitly or using some 
research approach that we did not include in our list of search terms. Using our 
marker terms, a larger group of studies seems to be making use of qualitative 
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methods, and—maybe surprisingly—a smaller group utilizes standard statistical 
tools as their research approach. These conclusions may be limited by being based 
on the text of the collection of papers searched using the indicator terms that were 
identified as being feasible. Alternative approaches, such as careful reading of all 
653 papers or a carefully selected random sample of these and other articles, might 
yield somewhat different conclusions.

3.4.2  The Object of Statistics Education Research (the What)

In this section we will discuss the object of research in statistics education. We start 
with some background on the development from the early days to current times. Of 
course, what is meant by ‘early days’ is debatable, but as in Chap. 2, we start with 
the first ICOTS conference held in 1982, following previous discussions about sta-
tistics teaching at earlier ISI conferences. As noted in Chap. 2, the journal Teaching 
Statistics was started in 1979, JSE in 1993, and SERJ in 2000, though the newslet-
ters of the International Study Group for Research on Learning Probability and 
Statistics go back to 1987, and the group itself even further. Here we focus on how 
research in statistics education has evolved from early discussions of pedagogical 
problems.

At the ICOTS 6 conference, Ottaviani’s (2002) keynote address investigated the 
papers published in ICOTS 1–6 and showed on the basis of their titles alone how the 
focus of the ICOTS conferences had changed over time. The first two ICOTS confer-
ences showed a focus on teachers and teacher training, predominantly in schools and 
sometimes using computers, and at tertiary level the cooperation between academic 
and practicing statisticians. ICOTS 3 placed students at the centre of interest, focus-
ing on the materials and approaches to develop quantitative literacy at school and 
introductory statistics courses at university. ICOTS 4 and 5 continued this approach, 
increasing the integration of computer-based approaches, particularly for data analy-
sis and developing statistical concepts. They also reported on the use of projects in 
developing students’ experience and made explicit reference to students of applied 
disciplines such as engineering and economics. In her keynote address at ICOTS 6, 
Ottaviani identified for the first time a focus on research, not only research in teach-
ing and learning statistics but also as ‘research methods’, a promising way of teach-
ing students of different disciplines about statistics. The previous references to 
computers broadened into the application of technology, earlier notions of quantita-
tive literacy became a broader focus on statistical literacy and thinking, and teacher 
training expanded to include development of statistics professionals generally.

At the same conference (ICOTS 6), Watson (2002) presented a summary of con-
temporary research in statistics education, utilizing a division into theoretical, quali-
tative, and quantitative studies. These she related to statistical thinking, statistical 
reasoning, and statistical literacy, based on her own work in these areas as part of 
the Statistical Reasoning, Thinking, and Literacy (SRTL) research forums (SRTL, 
2017). As an example of theoretical research, she described Wild and Pfannkuch’s 
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(1999) study on statistical thinking. As an example of qualitative research, she 
discussed the development of students’ understanding of sampling derived from 
their responses to media articles (Watson & Moritz, 2000a). This project was 
extended to a survey of several thousand school students’ ideas about sampling 
(Watson & Moritz, 2000b), providing an example of quantitative research.

Other sources of ‘historical’ information are previous reviews of statistics educa-
tion research from participants in the field and for the field (e.g. Jolliffe, 2003) and 
also from/for other groups such as mathematics educators (e.g. Shaughnessy, 
Garfield, & Greer, 1996). The chapter by Garfield and Ben-Zvi (2008) also sum-
marizes the historical background and then gives an overview of research questions 
addressed by contemporary researchers. The American Statistical Association 
report on research directions and priorities in statistics education (Pearl et al., 2012) 
mentioned earlier lists issues, research questions, and research priorities in six spe-
cific areas: cognitive outcomes, affective constructs, curriculum, teaching practice, 
teacher development, and technology, with a final section reviewing the range of 
currently available assessment instruments. Another recent review, focusing specifi-
cally on the use of technology at the school level, was carried out by Biehler, Ben- 
Zvi, Bakker, and Makar (2013) and may also take its place in the historical 
context.

Our examination using NVivo of 653 articles published between 2010 and 2014 
also enabled us to explore the question of what is being currently investigated in the 
area of statistics education research. We used the following words or phrases, 
selected from the complete text of the collection of articles, as search terms for the 
investigation: curriculum, assessment, GAISE (Guidelines for Assessment and 
Instruction in Statistics Education), technology, statistical reasoning, statistical 
thinking, statistical literacy, attitudes towards statistics, conceptions (of statistics or 
some aspect of statistics), and probability.

The most common focus of statistical investigations in the collection of papers 
was ‘curriculum’, mentioned in 378 of the 653 articles. This may be due to the 
essential characteristics of statistics education research and particularly to the fact 
that the small-r research papers were most likely to be concerned with some practi-
cal aspect of teaching and learning statistics. The occurrences of ‘curriculum’ 
showed the term being used in a broad sense; related terms included ‘assessment’ 
(392 articles), ‘technology’ (369), and ‘GAISE’ (138). In total, 564 articles (86%) 
included one of these terms related to some aspect of curriculum.

Another very common aspect reported in these papers was ‘statistical literacy’ 
(250 articles), ‘statistical thinking’ (214), or ‘statistical reasoning’ (214). A total of 
392 articles (60%) referred to at least one of these terms, sometimes collected 
together under the acronym SRTL (statistical reasoning, thinking, and literacy) and 
as such the subject of an active group of researchers. A total of 587 articles (90% of 
the papers) included at least one of the curriculum or SRTL terms.

Other topics in statistics education research were mentioned less frequently. 
They included the psychological aspects of ‘attitudes towards statistics’ (45 arti-
cles) and ‘conceptions’ of statistics or some aspects of statistics (140, but more 
accurately 70, since the other 70 made only one mention of the term, most often as 
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part of a reference). For the most part, these results are based on students’ ideas, but 
they sometimes include teachers’ ideas (particularly in the overlapping situation 
where students are preparing themselves to be teachers). Although it was problem-
atic to use ‘probability’ as a search term, due to its variety of uses, it did occur in 
over 400 papers but most often with its usual technical meaning rather than as an 
object of research. However, there were a number of papers focusing on aspects of 
teaching and learning probability or investigating students’ ideas about probability.

This summary presents a picture of the objects of interest of statistics education 
research. They are predominantly focused on two main areas: the broad topic of 
curriculum, including assessment, technology, and teaching guidelines, as repre-
sented by GAISE and the broad notion of statistical literacy, sometimes described 
as ‘statistical literacy, reasoning, and thinking’ or ‘statistical reasoning, thinking, 
and literacy’ (SRTL). Less commonly, research investigates students’ (and teach-
ers’) attitudes towards and conceptions of statistics or various aspects of statistics, 
and a number of studies focus specifically on aspects of probability. Our earlier 
comments about the limitations of the investigation apply here also.

3.4.3  The Participants in Statistics Education Research 
(the Who)

The third aspect of research in statistics education pertains to the people involved in 
research about statistics education. There are, of course, a wide variety of people 
involved in such work, from individual (or teams of) teachers who are carrying out 
investigations on their own classes beyond the work for which they are paid (whom 
we refer to as small-r researchers) through to academics leading university-based 
research groups carrying out systematic investigations into some aspect of statistics 
education (large-R researchers). Also included are individuals or groups carrying 
out research on some aspect of statistics education but unconnected with the formal 
teaching of the discipline in schools and universities. The aim of this section is to 
give an indication of the various groupings of researchers in the world of statistics 
education research.

We are, of course, not the first to reflect on such issues. In 1995, when Garfield 
wrote her oft-cited paper ‘How students learn statistics’, there was little solid 
research within the field of statistics education itself; rather, most research came 
from studies or models in other areas of relevance, such as psychology or mathe-
matics education. In 1998, and later in 2003, Jolliffe (who would later become the 
first co-editor, together with Batanero, of SERJ) reflected directly on the who ques-
tion, as by that time research by statistics educators had begun to emerge. More 
recently, Garfield and Ben-Zvi’s (2007) ‘revisited’ article (also the chapter ‘Research 
on teaching and learning statistics’ in Garfield & Ben-Zvi, 2008, pp. 21–43, and the 
discussion in Zieffler et al., 2011) gave a summary both in historical terms and of 
the then-current participants in statistics education research. During the time cov-
ered by these references, the field of statistics education has matured and expanded 
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in several ways, and thus it is worthwhile revisiting questions about groups involved 
in research in or about statistics education.

There are various ways to consider such groupings, for instance, participants at 
the ICOTS conferences or regional and national conferences such as OzCOTS 
(Australian Conference on Teaching Statistics); authors, editors, and reviewers of a 
journal such as SERJ (particularly those working on a special issue); researchers 
belonging to a specific research programme, such as the team at the University of 
Minnesota headed by Garfield; researchers focusing on a particular aspect of statis-
tics education research, such as SRTL (The International Collaboration for Research 
on Statistical Reasoning, Thinking, and Literacy, SRTL, 2017); or members of a 
particular statistics education initiative, such as CensusAtSchool.

One theoretical lens for such an endeavour is available from Wenger’s (1998) 
notion of ‘communities of practice’. According to this model, a community of prac-
tice consists of a group of people who share a domain of interest and who engage 
and interact with others in the group in their development of a shared repertoire to 
achieve their aims. Wenger (2013, p.  1) describes this succinctly on a website: 
‘Communities of practice are groups of people who share a concern or a passion for 
something they do and learn how to do it better as they interact regularly’. Statistics 
education researchers could be described as a single, large, and diverse community 
of practice, according to Wenger’s ideas. Alternatively, it may be more useful to 
identify several professional (and social) groupings of people involved with various 
aspects of statistics education research, representing several interlocking communi-
ties of practice.

Some researchers may be members of more than one of these communities of 
practice, participating fully in quite different aspects of statistics education research, 
whereas others might be peripheral members of one or more such groups. For 
instance, Groth (2015) highlights the growing ‘boundary interactions’ between 
researchers in mathematics education and statistics education. The structure of such 
a group or groups may shape the topics and directions taken in research in the field. 
Individual statistics educators who are carrying out exploratory research on their 
own practice (small-r research) could be viewed as ‘legitimate peripheral partici-
pants’ (Lave & Wenger, 1991), newcomers to the community who are becoming 
acquainted with the tasks, vocabulary, and organizing principles of the community, 
on the way to becoming full participants. Such individuals may develop a coherent 
programme of research, working on their own or joining with other researchers with 
similar interests, and hence become more central participants in the community of 
practice.

Our analysis of the literature, helped by our familiarity with a variety of different 
projects and actors in the field, suggests that there are multiple ways to characterize 
the persons and groups doing research in or about statistics education. For simplic-
ity, we focus below on three characterizations, (1) by disciplinary background of 
researchers, (2) by the institutional context of the research, and (3) by the geo-
graphical or cultural context of the research. However, our purpose is not to offer 
these as rigid groupings, since they are not mutually exclusive, and each of these 
labels is by itself multifaceted. Rather, we use these characterizations as part of our 
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broader effort to sketch the broad diversity of who is doing research in our field, and 
to enrich our view of the uniqueness and scope of our field, and our understanding 
of how knowledge has evolved and may continue to develop in the field of statistics 
education.

3.4.3.1  Disciplinary Background of Researchers

It is useful to reflect on the disciplinary or professional background of the individu-
als involved in research in statistics education, in other words, the domain in which 
they have obtained their academic degrees, and the academic departments or orga-
nizations in which they work. Although there is no central database in which all 
relevant data are compiled, it is possible to get a sense for disciplinary or profes-
sional background by analysing contact information and biographical sketches of 
scholars who present research in journals such as SERJ or JSE or in conferences 
such as ICOTS.

When we speak to people outside the field of statistics education, they often 
express a belief that it is statisticians who do research on statistics education. 
However, even a cursory analysis of sources such as those outlined above suggests 
a very different picture. Typically, it involves people with backgrounds in statistics, 
psychology, and various fields within education, notably mathematics education, 
but also other STEM (science, technology, engineering, mathematics) fields such as 
computer education. In addition, there are professionals from other fields where 
statistics are being used and taught, such as biostatistics, biology, agriculture, busi-
ness, medical sciences, and various social sciences, and also specialists from official 
statistics agencies (i.e. statistics producers) and other organizations who may be 
involved in initiatives with an educational component.

Although arguably incomplete, the list above is sufficient to suggest that the 
disciplinary background of those publishing research in or about statistics education 
is very broad and extends well beyond statisticians per se. This is of interest as 
researchers’ disciplinary background may dictate what they count as credible evi-
dence and may affect their choice of topics for research and the methods that are 
deemed appropriate to study them. For instance, the professional training of statisti-
cians is normally focused on quantitative methods with less or little attention to the 
design of research instruments (i.e. questionnaires) and little or no attention to qual-
itative methods (Ograjenšek & Gal, 2016). As a result, statisticians may focus on 
research questions that are accessible to them or that can be examined within a posi-
tivistic paradigm, and much less so on research problems that require qualitative or 
mixed-methods methodologies, which are more common, for example, in mathe-
matics education. We have seen earlier using our analysis of published articles that 
around a quarter of the papers gave evidence of quantitative approaches, and almost 
half gave evidence of qualitative approaches; this seems consistent with our obser-
vation that much research in statistics education is being carried out by workers 
outside the field of statistics.
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3.4.3.2  The Institutional Context of Research

‘Context’ is a broad term and has various meanings when it comes to research. Here 
we focus on institutional aspects of the context. Firstly, researchers are usually 
defined by way of their work role, and this label primarily pertains to academics 
who are expected to produce research as an integral part of their professional work 
and to contribute to the accumulation of general knowledge via publication in peer- 
reviewed academic journals and conferences. Such large-R research usually 
addresses broad challenges not limited by time or place, is informed by broad theo-
retical models, and may aim to help theory-building or to have educational implica-
tions of a broad nature. However, in statistics education we also see many examples 
of small-r research, carried out by people, most often school or university teachers, 
whose motivation is mainly on local problems set in a particular context.

A typical and important example of small-r research is of teachers who may not 
define themselves as researchers yet are motivated by phenomena they encounter as 
part of their own practice to carry out an investigation on their own class, sometimes 
with locally designed instruments (such as a brief attitude survey or a test of specific 
cognitive tasks). Situations where teachers examine their own teaching in a system-
atic manner and share their conclusions with others via scholarly channels (e.g. 
conferences, peer-reviewed journals) have received increasing attention over the 
last three decades in the academic literature on the ‘scholarship of teaching and 
learning’ or ‘scholarship research’, pertaining to both tertiary/academic and school 
contexts (see Bennett & Dewar, 2012; Boyer, 1990).

Small-r research sometimes gets reported in professional conferences but we 
believe is not receiving wide representation in professional journals related to statis-
tics education, despite its obvious importance to the actual improvement of practice 
and its potential to inform large-R research in a bottom-up fashion. This might be 
because of several reasons, such as teachers’ lack of experience in writing for schol-
arly journals, because the customized nature of their instruments or research design 
makes it difficult to generalize in a way that is valued (or accepted) by referees in 
peer-reviewed journals, or because the researchers may be less familiar with the 
extant literature and hence may have difficulty explaining how their research fits 
into the broader body of existing knowledge.

This implies that the picture provided by papers in academic peer-reviewed jour-
nals is incomplete. What we know about key problems or processes in concept devel-
opment and other issues that affect teaching and learning in statistics, about teachable 
moments, or about what works or does not work, and possible educational innova-
tions, may be limited in several ways. Cumulative wisdom that may exist in the field 
and that may have been captured by localized small-r studies could be hiding under 
the radar of the large-R research community in statistics education. Countering this 
to some extent is the inclusion in our qualitative analysis of papers presented at con-
ferences on statistics education, albeit at those with the highest profile (such as 
ICOTS); these papers certainly include examples of such small-r studies.
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3.4.3.3  The Geographical or Cultural Context of the Research

Another possible aspect of the context of research is the particular country or region 
where research is being conducted and, linked with that, the particular academic 
culture from which the research arises. An examination of research in statistics edu-
cation shows that a large proportion of research papers are written by people in 
English-speaking countries (primarily the USA, Australia, the UK, and New 
Zealand) or other European countries (e.g. the Netherlands, Spain, Belgium, France, 
etc.). Such wealthier countries differ from many less wealthy countries in terms of 
the quality of educational infrastructure, the availability of computer systems and 
advanced technology in the classroom, the quality of teacher education, and other 
organizational aspects such as the presence of national evaluation schemes or 
national curricula. These differences will have obvious effects on statistics educa-
tion and thus on the statistics education research that is undertaken and the results 
obtained.

Certainly, the predominance of publications in English is a result of the scientific 
hegemony of the English-speaking world, in which research is published preferen-
tially in English, the lingua franca of the academic world. Even researchers in coun-
tries with other languages will aim if possible to send their results to an English 
language journal or present them at an English-speaking conference; if they don’t, 
their results will most often be relegated to ‘local’ (and thus, of limited interest) 
status. Of the sources that we used for our collection of articles for analysis, only 
SERJ gives researchers the opportunity to submit papers in another language 
(French or Spanish, but in fact during the 2010–2104 window, only one non-English 
paper was published, Bihan-Poudec, 2010, in French and with an English 
summary).

When Zieffler et al. (2011) analysed the output from the first 8 years of SERJ, the 
authors of the publications were drawn from only 15 countries. A special issue of 
SERJ at the end of 2014 (volume 13, number 2), entitled ‘A Global View of Statistics 
Education Research’, aimed specifically to broaden international representation 
(see North, Reston, Cordani, & Petocz, 2014), and currently 25 countries are repre-
sented. However, this is still a very small proportion of the world’s countries and 
smaller than the representation at conferences such as ICOTS (at which around 50 
countries may be represented).

In the 2014 SERJ special issue, there were eight papers published from Brazilian 
authors (perhaps a continuation of the interest generated by Brazil hosting ICOTS 
7 in 2006). These papers gave an insight into a strong culture of statistics education 
research, based on a commitment to statistics education at all levels from pre-school 
to university. There was an obvious community of practice amongst Brazilian statis-
tics education researchers, for the most part expressed in the Portuguese language. 
The Associação Brasileira de Estatística (ABE, Brazilian Statistical Association) is 
active with conferences and publications, and although none of them focuses only 
on statistics education research, they do include this as a topic of study. Several 
universities have active groups of researchers in the field, for instance, the University 
of São Paulo (USP) and the Federal University of Rio Grande (FURG), and research 
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students are completing master’s and doctoral degrees in aspects of statistics 
education. The Sociedade Brasileira de Educação Matemática (SBEM, Brazilian 
Society of Mathematical Education) has included since 2000 an active Working 
Group (GT12 Ensino de Probabilidade e Estatística, Probability and Statistics 
Teaching); a detailed description of its background and work is given by Cazorla, 
Kataoka, and da Silva (2010). The group has recently published, with the Pontifical 
Catholic University of São Paulo (PUC-SP), a special issue of Educação Matemática 
Pesquisa on research in statistical education (Coutinho & Samá, 2016). Despite all 
this, there was a significant effort involved in preparing and publishing eight papers 
from Brazilian authors in English, and without such effort these results are mostly 
unavailable to English-speaking researchers.

The French-speaking world also has a keen interest in statistics education 
research. The Colloque Francophone Internationale sur l’Enseignement de la 
Statistique (CFIES) has been held every 2 years (or so) since 2008 under the aus-
pices of the Société Française de Statistique, although the papers presented do not 
seem to be available online. For Spanish-speaking researchers, particularly those in 
Latin America, the IASE publishes Hipótesis Alternativa, a bulletin that summa-
rizes conferences, articles, and theses in Spanish (and sometimes Portuguese) to 
support the large community of Hispanic researchers in statistics education.

In other countries there is not only the problem of language but also that statistics 
education itself is only a very recent phenomenon; for instance, this very situation 
in Japan was described by Takemura (2013). With little teaching of statistics in 
schools, and no university department of statistics in the country, the absence of 
statistics education research was not surprising. However, the location of the 2018 
ICOTS 10 conference in Kyoto will give a significant impetus to the development 
of statistics teaching and research in the country, and if it follows the trajectory of 
several other countries that have hosted ICOTS, the effects will be manifest for 
some time.

A related aspect of geography and culture has to do with social conditions or 
research traditions which predispose researchers to focus on specific issues or uti-
lize specific methods. The 2014 special issue of SERJ provides some examples. 
Coming mostly from less-developed parts of the world, many papers showed a 
strong sense of social justice in the role of statistics education, or indeed education 
in general, in national development. The articles from South Africa demonstrated 
the use of statistics education to help in rebalancing social conditions after the years 
of apartheid, whereas many of the papers from Brazil showed elements of the ‘criti-
cal pedagogy’ of Paulo Freire (Freire & Clarke, 2000). In terms of research tradi-
tions, Spanish- and Portuguese-speaking authors seem to use a different palette of 
theory from that utilized in English-speaking countries (particularly the USA); sev-
eral of the papers used the philosophical perspective of Piaget or the ‘onto-semiotic’ 
approach of Godino and Batanero (see Godino, Batanero, & Font, 2007).

The differences noted above may affect what is considered an educational prob-
lem and may cause researchers to take for granted certain contextual conditions in 
designing research or in discussing its relevance to other educators and teaching 
contexts. As a consequence, the results from research in some countries may have 
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limited applicability to other countries, and judgements as to what is an important 
obstacle or problem for research may be affected by value judgements coloured by 
the geographical or cultural context.

This section has sketched in broad strokes various classifications of who is 
involved in research of relevance to statistics education. Coming back to the ques-
tion of whether there is a single coherent community of practice, we believe that for 
now the answer is negative. The trends noted in this section regarding the great 
diversity in who is doing research could affect the potential impact of research in 
statistics education. Researchers tend to think that the purpose of research is to 
inform knowledge-building, but there are other views and critiques (e.g. Lester & 
Wiliam, 2002) of the actual contribution of educational research to practice and to 
educational policy both at the national level and at the local or institutional level 
(e.g. what curriculum to follow, what methods to adopt). We believe that there is 
much more to do before we can truly talk about an inclusive international commu-
nity of practice in statistics education.

3.5  Discussion

In this chapter we have investigated overarching questions about statistics education 
research—the how, the what, and the who, and to some extent the why, of such 
research. Our investigation is both theoretical and empirical, the former looking at 
the underlying ideas of research approach and methodology, the latter based on an 
examination of a selected body of published research in the field. We face a wide 
range of research activities:

• In some cases, which we termed small-r, research in statistics education grows 
firstly from the curiosity of teachers of statistics working with their classes at all 
levels from pre-school to university. Some teachers turn this curiosity into inves-
tigations of their own classes and students or their own teaching practice, and this 
culminates in informal and contextualized research that is not designed for aca-
demic circulation.

• At the other end of a continuum are statistics educators who are involved in 
large-R research—purposeful, informed, methodical, and communicable inves-
tigations that are generally well beyond their own class or lecture rooms. They 
are joined in this endeavour by researchers who work in environments beyond 
the context of statistics education, maybe in some other discipline (such as math-
ematics) or for official statistics agencies.

• There are hybrid cases that mix aspects of small-r and large-R, such as evalua-
tions of funded projects focused on statistics education or internal user surveys 
by official statistics agencies. Such efforts culminate in presentations or reports 
that may be quite formal yet are designed for internal circulation, or present 
conclusions with a local focus, with less a priori intention on deriving generaliz-
able conclusions.
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Regarding how, we have seen that methodologies for statistics education research 
can be described as positivistic or socially constructed, maybe incorporating a criti-
cal theoretic approach, and they can be broadly divided into quantitative and quali-
tative approaches and their various combinations. The quantitative, positivistic 
approaches, based on designed studies carried out with standard scientific 
approaches, are generally accepted as providing relatively rigorous conclusions—if 
and when they are carried out in a way that is consistent with the discipline of sta-
tistics itself. The qualitative approaches, based on case studies, interviews, ethnog-
raphies, content analyses, action research, and the like, have less status in scientific 
terms, and there are debates about the extent to which they provide an appropriate 
basis for pedagogical decisions (such as the US No Child Left Behind Act of 2001, 
see Shelley, 2005). Yet there are many situations where such qualitative investiga-
tions are more suited to the research goals, to actually finding out what is going on 
in the minds of participants in the educational process, and indeed they are in wide 
use and reported in many channels. It seems to us, however, that most published 
papers in the field avoid explicit discussion of the ontological aspects of their 
research methodology.

The question of what is being investigated in statistics education research has 
been addressed in several previous publications, but resulting descriptions need to 
keep up to date with shifting trends and emphases. Indeed, our empirical analysis of 
recent publications indicated the preponderance of studies that examine knowledge 
of curriculum topics and aspects of statistical reasoning, thinking, and literacy. 
Attitudes towards and conceptions of aspects of statistics were mentioned in a 
minority of articles.

In terms of who, we have utilized the notion of communities of practice to 
describe various interrelated groups of participants in statistics education research. 
We have concluded that the majority of research in the area is carried out by people 
who would not be described as practicing statisticians. For the most part, they are 
statistics educators in a wide variety of disciplinary fields and also people involved 
in the production and dissemination of statistical information. When statistics edu-
cators carry out small-r research based on their own context and practice, only part 
of this gets reported at professional conferences or journals, and there is a loss of 
potentially useful information. A minority of such educators are working in more 
formal research groups, usually at tertiary level, and publishing in academic jour-
nals. As most such publications are in English, results from researchers in countries 
with other languages, and sometimes other research traditions, are often difficult to 
include in the overall body of statistics education research.

Our reflection on the how, what, and who of research in statistics education has 
relied in part on an exploratory analysis of a collection of 653 articles published 
from 2010 to 2014. Such an analysis has not been previously reported in the litera-
ture; it has helped us to sketch in broad strokes some key features of research in 
statistics education. We have already outlined the rationale and some pros and cons 
of this analysis. Here we sketch some possible alternative directions for research 
that could expand our overall understanding of the methods and scope of research 
in or related to statistics education.
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• The range of journals could be expanded to those that occasionally publish 
articles on statistics education research (such as Mathematical Thinking and 
Learning and other mathematics education journals). Likewise, the list of confer-
ences could be extended to those that may include papers on statistics education 
research (such as the AERA, American Educational Research Association con-
ferences). The reference range of years could be extended.

• A wider range of ideas and search terms could be used to capture methodologies 
and research on subtopics that are not easily identified by word frequencies or 
traditional word clouds.

• It may be possible to go beyond studies of core aspects of statistics education, to 
examine broader research that is not necessarily conceived by its authors as 
directly related to statistics education. Examples are studies on understanding of 
risk in domains such as financial or medical literacy, some of the research on 
human judgement and decision-making, research in mathematics education on 
understanding of ideas about proportionality and percents, research in science 
education about students’ understanding of causality or research design, or 
research related to data literacy or design of dynamic visualizations.

These and other points imply that the search space for such a future bibliometric 
analysis or large-scale review of cumulative literature is nebulous and contestable. 
Although an overall picture such as the one we have given may have its uses, the 
best summary of specific areas of research in statistics education is given by people 
who have expert and comprehensive knowledge of each area: this is indeed what is 
given in the following chapters of this handbook.

3.6  Conclusions

The distinction between small-r and large-R research types, and the analysis of the 
diverse types and categories associated with the how, what, and who (and also the 
why) questions, seems important to us for several reasons. This analysis enables us 
to problematize what is considered ‘research’ in statistics education, what criteria 
are applied to judge the quality of research, and to whom and how such research is 
known and in turn how much it contributes to extant knowledge. The range of what 
qualifies as research in (or of relevance to) statistics education is broader than what 
gets published in leading journals and conferences in our field. Some research 
appears in publications of related disciplines, most commonly mathematics educa-
tion research journals, seen in some circles (including, unfortunately, some funding 
bodies) as more prestigious than statistics education journals. Further, some types of 
research and potentially useful results ‘fly under the radar’ of the statistics educa-
tion community, for instance, because of diverse perceptions regarding the accept-
ability of specific research questions or methodologies or due to the language of 
publication. In addition, self-posed intentions for generalization of the persons or 
groups involved in the research affect whether a research process is written up for 
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publication and, if so, how it is written. These and other factors arguably contribute 
to loss of information and constrain the scope of what is known or what is accepted 
as ‘scientifically known’ in our field.

Another conclusion from the above analysis, as well as from the earlier explora-
tion of the who question, is that there are several distinct communities of practice 
that generate research of relevance to statistics education, overlapping only occa-
sionally. We believe that there is much potential to increase these overlaps and pro-
vide for better integration of efforts and cross-sharing of results between these 
communities of practice. This can certainly be aided by technological advances, 
such as quick and easy internet and video communication between researchers, and 
enhanced machine translation of articles and presentations from different languages, 
but it also depends on personal commitment from various members.

We advocate for and hope to see more aspects that improve knowledge-sharing 
in statistics education research, such as:

• Cultural inclusivity and tolerance in the peer review process.
• Mentoring of small-r researchers by those with more formal research skills.
• Reflective sessions at professional conferences that enable the sharing of practi-

tioner research and programme evaluation efforts (i.e. seemingly small-r 
research) in ways that can emphasize their unique nature and contribution to 
cumulative knowledge and a discussion of their links with large-R research.

• ‘Research interpretation’ sessions that enable academic researchers and practi-
tioners to examine large-R research from the point of view of teachers and 
teacher-trainers working in diverse settings. The goal in this case is to improve 
the contribution of the research to modes of thinking and to action plans of prac-
titioners in the field. This would increase the likelihood that results from ‘aca-
demic’ research will actually be known and have an impact on educational 
decisions by those who are forming curricula and lesson plans, training teachers, 
or designing tools for assessment and monitoring of progress towards learning 
goals in statistics education.

Considering the future of research of relevance in statistics education, the chap-
ter authors also offer individual views about challenges in this regard. The three 
authors have different disciplinary backgrounds (Peter in statistics and mathemat-
ics, Anna in music and higher education, Iddo in applied psychology); they have all 
been active in the field of statistics education research for some time (two decades 
or longer). Two of them (Iddo and Peter) have been editors of SERJ (and Anna has 
been editor of other journals). They come from different countries and have differ-
ent first languages (Iddo from Israel, Peter from Hungary, and Anna from Australia). 
Between them they represent some of the diversity that we see in the field of statis-
tics education research. Here is one final paragraph from each.

Iddo: One area for me is especially challenging: research on the development of 
statistical literacy of both adult populations and those who are still in formal educa-
tion systems, tertiary, or school. Such research needs to cope with the multidisci-
plinary nature of statistical literacy, which encompasses not only knowledge bases 
in literacy and mathematics, statistics, and probability but also the many attitudinal 
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and belief systems associated with statistical literacy. The development of statistical 
literacy, although important from a societal perspective, is facing many obstacles as 
it does not have a natural place in the curriculum or in the mind and schedules of 
many teachers (such as those who teach traditional introductory statistics at the col-
lege or high school levels). Hence research in this regard will also have to examine 
numerous institutional and applied aspects associated with curriculum change, 
teacher preparation, methods for evaluating the impact of professional develop-
ment, or new technology tools, and more.

Anna: Of concern for the next few decades of statistics education research is its 
reach into other academic disciplines. Curiously, the examples provided in this 
chapter have a particular omission—very few creative and qualitative disciplines, 
such as music or design, are represented (one investigation of the area is reported in 
Gordon, Reid, & Petocz, 2014). Researchers from such disciplines find themselves 
on the periphery of the discussion and are often somewhat ill-prepared to use statis-
tical ideas in their research because their discipline does not naturally include 
 statistics in the early years of study. This is of particular importance when we con-
sider that the outcomes of statistics education research are usually to improve an 
aspect of the learning environment that includes statistical thinking or practices, in 
order to change some aspect of contemporary life.

Peter: As an editor of the Statistics Education Research Journal for several years, 
I have had the opportunity of working with large-R researchers who are preparing 
the results of their investigations for publication and widespread dissemination. A 
truly wide coverage of aspects of statistics education research has been reported in 
that journal, and it is likely to continue as an up-to-date source of insight into such 
research. A particularly useful feature has been the special issues focusing on spe-
cific, and sometimes problematic, aspects of statistics education research. These 
have included research on reasoning about variability (2004), reasoning about dis-
tribution (2006), informal inference (2008), qualitative approaches in statistics edu-
cation research (2010), attitudes towards statistics (2012), as well as a global view 
of statistics education research (2014) discussed earlier. A special issue on learning 
and teaching probability within statistics was recently completed (2016), and 
another on statistical literacy has just been published (2017). The topics of these 
special issues give a view of the key concerns for statistics education research over 
the past decade and more and will continue to act as signposts for future 
challenges.

Research of relevance to statistics education has come a long way over the last 
30-some years and is a growing field that is developing its own distinct identity. Our 
analysis of questions pertaining to how, what, and who will most likely need to be 
re-examined in a few years in light of rapid changes in our field and the many con-
texts to which it is linked. The analysis (both the ontological and the empirical) 
suggests that it is not possible, nor wise, to set fixed or clear boundaries on what or 
who qualifies as ‘research(ers) in statistics education’. The appearance of new needs 
and new contexts for teaching and learning statistics and probability (e.g. in areas 
such as health education, financial education, or civic education) will also require 
fresh thinking on accepted methods and the use of mixed-methods designs.
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Amongst other things, expanding uses of technology are rapidly changing the 
landscape of statistics education. Increased use of specialized applets and dedicated 
software for teaching statistics raises new questions about teacher-student, student- 
student, and student-technology interactions and how to understand and improve 
them. The proliferation of megaclasses, MOOCs, and other virtual learning envi-
ronments (such as training modules for the general public on websites of official 
statistics agencies or statistics providers such as Gapminder) raises new questions 
about the nature of teaching and learning processes. As Gal and Ograjenšek (2010) 
argue, these and related changes require the use of new research methodologies (e.g. 
netnography, text analytics, log analysis) and an expansion of the range of expertise 
or disciplinary background of those involved in research on statistics education.
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Part II
Major Contributions of Statistics 

Education Research

Maxine Pfannkuch and Robert delMas

Part I of the Handbook presents an overview of Statistics and Statistics Education 
and then situates Statistics Education Research within both of those perspectives. 
This part of the Handbook, Part II, aims to provide a discussion of major contribu-
tions of statistics education research related to learning and understanding statistics. 
Rather than having each chapter focus on a specific statistical topic (e.g., hypothesis 
testing), seven themes were chosen that highlight not only the research conducted 
within statistics education but also the gaps in the research knowledge base. The 
seven themes covered in Part II are the practice of statistics, research on data, 
research on uncertainty, introducing children to modeling variability, learning about 
statistical inference, statistics learning trajectories, and research on statistics teach-
ers’ cognitive and affective characteristics. Each chapter summarizes foundational 
and current work to illustrate contrasting perspectives, directions, and progress in 
our understanding of how students learn key statistical concepts. The authors of 
each chapter also identify promising methodologies and questions that need to be 
addressed and explored to further our understanding through future statistics educa-
tion research. This sets the stage for Part III of the Handbook where promising new 
approaches and perspectives on both the learning and teaching of statistics and 
methodologies for future statistics education research are discussed.

The first theme considers the enterprise of statistics as a whole, the investigative 
cycle of inquiry and statisticians’ practice, and how students might be enculturated 
into statistical thinking and practice. In Chap. 4, Jane Watson, Noleine Fitzallen, Jill 
Fielding-Wells, and Sandra Madden first describe several different frameworks that 
have been proposed by national guidelines and researchers for the practice of statis-
tics, highlighting similarities and differences across the frameworks. This is fol-
lowed by summaries and descriptions of a variety of research on stages of the 
statistical investigative cycle that are common across the different frameworks (e.g., 
problem posing, data production, visual representations, technology, data analysis, 
statistical inference), as well as studies of students engaged in the entire investiga-
tive cycle. The authors point out areas that have not been researched (e.g., students 
understanding and ability to carry out the structuring, cleaning, and manipulation of 
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data) as well as numerous areas where future research is needed to corroborate and 
extend research findings, especially those from small-scale studies. Several Big 
Ideas of statistical thinking and practice (e.g., Data, Center, Variability, Sampling, 
Statistical Models) that permeate and unify the different stages of a statistical inves-
tigation are discussed. Chapter 4 ends with a discussion of statistical literacy, raising 
the question of whether students can develop adequate statistical literacy without 
having experienced the practice of statistics. The thorough coverage of research will 
provide the reader with a rich understanding of effective practices for promoting 
students’ understanding of the practice of statistics, as well as areas where our 
knowledge of how best to teach statistics is wanting.

The next four chapters cover themes that we regard as key components underpin-
ning statistical inquiry. The focus of the second theme is on the role and use of data 
in statistical inquiry, summarizing research on students reasoning with and about 
data. In Chap. 5, Rolf Biehler, Daniel Frischemeier, Chris Reading, and Mike 
Shaughnessy first explore what it means to reason about data from different per-
spectives such as national curricular documents and association guidelines, as well 
as research frameworks. The discussion about reasoning is followed by sections 
organized around four statistical concepts related to data: variability and variation, 
distribution, comparing groups, and association. Each section provides a thorough 
overview of research methodologies and frameworks that have been used to inves-
tigate students’ reasoning at different ages and for different groups (e.g., preservice 
teachers), and our current understanding of how reasoning about data in each area 
develops. Several of the sections highlight the role of technology in the develop-
ment and study of students’ reasoning and thinking about data. The chapter ends 
with a summary of the findings and a discussion of the pros and cons of the research 
methodologies that have been used to study reasoning about data, with recommen-
dations for methods that can expand our understanding.

The third theme looks at probability and uncertainty. Dave Pratt and Sibel Kazak 
look at the research on the teaching and learning of uncertainty in Chap. 6. Three 
primary issues from the research literature are emphasized: new theoretical perspec-
tives on heuristics and biases in reasoning about uncertainty resulting from critiques 
of research in this area; the role of conceptual and experiential engagement in the 
conceptual development of reasoning about uncertainty, including the role of tech-
nology; adopting a modeling perspective to teaching and learning about probability. 
The role of the teacher in shaping the learning environment in various critical ways 
emerges as a key finding. The chapter concludes by identifying challenges to teach-
ing uncertainty, needed areas (e.g., subjective probability) and promising directions 
(e.g., exploratory research on the role of modeling) for future research, and the need 
for carefully designed experiments to test hypotheses that are apparent from more 
established studies.

The fourth theme looks at the use of models and modeling in statistics instruc-
tion. Chapter 7 takes a more focused look at the potential role of what Richard 
Lehrer and Lyn English refer to as “inducting elementary aged children into the 
statistical practice of modeling variability.” This chapter intersects with topics cov-
ered in previous chapters such as data, distribution, and variability, as well as the 
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role of technology. There is a direct tie back to Chap. 6 through an emphasis on the 
use of models and modeling approaches. Summaries of conceptual frameworks for 
models, representations, and data modeling are presented. This is followed by a 
thorough review of the research literature from which emerges a trajectory of mod-
eling experiences for developing elementary aged children’s understanding of sta-
tistical concepts, including statistical inference. Suggestions for future research on 
the role of modeling and modeling technologies to expand students’ understanding 
of statistical practice are discussed.

The fifth theme examines what we currently know about teaching students to 
understand statistical inference. In Chap. 8, Katie Makar and Andee Rubin review 
research on the learning of statistical inference, focusing in particular on informal 
statistical inference at the school level. The chapter begins by arguing for the impor-
tance of understanding statistical inference and the opportunity inference provides 
for unifying the learning of statistics. Research on the challenges students encounter 
in learning statistical inference is summarized, with emphasis on strategies that 
capitalize on technology. The chapter then turns to the research on informal statisti-
cal inference that has emerged over the past decade. Classroom research on 
approaches to developing informal statistical inference at primary, secondary, and 
tertiary levels and the impact of these approaches on understanding statistical infer-
ence are reviewed. The chapter ends by outlining gaps in research on statistical 
inference, suggestions for future research with emphasis on statistical modeling and 
big data, and the potential for informal inference approaches to reinvent the teach-
ing and learning of statistics.

As illustrated in some of the previous chapters, the field of statistics education 
research has matured to the point where there is a better understanding of how some 
statistical concepts develop. When further considering the main contributions in the 
statistics education field, the development of learning trajectories to study statistical 
understanding and the role of the teacher in students’ learning are prominent as 
major themes in current research. Exploring the sixth theme of Part II, Pip Arnold, 
Jere Confrey, Ryan Seth Jones, Hollylynne Lee, and Maxine Pfannkuch discuss in 
Chap. 9 how learning trajectories derived from knowledge and models of concep-
tual development can inform both teaching and research in statistics education. 
According to the authors, a learning trajectory is derived from a web of information 
on theories about statistics teaching and learning, knowledge of learning in the sta-
tistics context, and knowledge of statistics activities and representations. The 
authors outline the characteristics of learning trajectories and exemplify how learn-
ing trajectories have been used in research using three case studies: sixth-grade 
students’ exploration of ways to represent and measure variability in data; preparing 
ninth-grade students to make a judgment when comparing two groups; teachers’ 
conceptual development of repeated sampling in an inference context. Commonalities 
and differences across the learning trajectories in the three case studies, the poten-
tial of research based on learning trajectories to impact curriculum and classroom 
practice, current limitations and issues associated with this type of research (e.g., 
scalability and lack of pathways across grade levels), and implications for future 
research are discussed.

Part II Major Contributions of Statistics Education Research
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The seventh and final theme in Part II turns attention specifically to teachers of 
statistics. Randall Groth and Maria Meletiou-Mavrotheris review the literature on 
statistics teachers’ cognitive and affective characteristics in order to understand the 
role they play in developing students’ understanding of statistics in Chap. 10. The 
chapter first outlines and defines several frameworks for characterizing cognitive 
constructs (e.g., subject matter knowledge, pedagogical content knowledge, techno-
logical pedagogical content knowledge) and affective constructs (beliefs and atti-
tudes). This is followed by an overview of different methods that have been used to 
assess statistics teachers’ cognitive and affective characteristics (written assess-
ments, interviews, observational studies). After a thorough review of frameworks 
and assessment methods, Groth and Meletiou-Mavrotheris summarize the research 
on teachers’ understanding of key conceptual areas explored in previous chapters of 
this handbook (e.g., data, distribution, variability, association, uncertainty, 
 inference), pointing out the similarities and differences between students’ and 
teachers’ understanding and attitudes in each of these areas, and identifying promis-
ing directions for teacher development. The chapter concludes with an exploration 
of promising methods for teacher education and development that promote more 
effective methods of teaching statistics.

As the editors of Part II of this handbook, we have had the privilege of shepherd-
ing each chapter through reviews and revisions. We are impressed with the breadth 
of the research that is covered by these seven chapters, as well as the quality of the 
writing and insights that the respective groups of authors have produced. Our under-
standing of statistics education and the conduct of statistics education research has 
been enriched by the process, and we hope that you will find your own understand-
ing expanded as you engage with each chapter.

M. Pfannkuch and R. delMas
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Chapter 4
The Practice of Statistics

Jane Watson, Noleine Fitzallen, Jill Fielding-Wells, and Sandra Madden

Abstract This chapter presents an overview of the Practice of Statistics focusing 
mainly on research at the school level. After introducing several frameworks for the 
practice, research is summarized in relation to posing and refining statistical ques-
tions for investigation, to planning for and collecting appropriate data, to analyzing 
data through visual representations, to analyzing data by summarizing them with 
specific measures, and to making decisions acknowledging uncertainty. The impor-
tance of combining these stages through complete investigations is then stressed 
both in terms of student learning and of the needs of teachers for implementation. 
The need for occasional backtracking is also acknowledged, and more research in 
relation to complete investigations is seen as a priority. Having considered the 
Practice of Statistics as an active engagement by learners, the chapter reviews pre-
sentations of the Big Ideas underlying the practice, with a call for research linking 
classroom investigations with the fundamental understanding of the Big Ideas. The 
chapter ends with a consideration of the place of statistical literacy in relation to the 
Practice of Statistics and the question of the responsibility of the school curriculum 
to provide understanding and proficiency in both.
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4.1  Introduction

The Practice of Statistics is the title of the well-known introductory college text-
book of Moore and McCabe (1989), which is now in its eighth edition (Moore, 
McCabe, & Craig, 2014). In the first edition, Moore and McCabe said it was their 
“intent to introduce readers to statistics as it is used in practice. Statistics in practice 
is concerned with gaining understanding from data; it is focused on problem-solv-
ing” (p. xi). As a text written for the transition between the secondary and tertiary 
levels of education, this simple description suits all levels of education. The Practice 
of Statistics is hence the title and main focus of this chapter. It is a fortunate coinci-
dence that the same year, the US National Council of Teachers of Mathematics 
(NCTM) published its Curriculum and Evaluation Standards for School Mathematics 
(1989), which introduced statistics across all years of schooling from kindergarten, 
again from a problem-solving perspective. Significant for educators and researchers 
was the final paragraph of Standard 10 for Grades 9–12:

Statistical data, summaries, and inferences appear more frequently in the work and every-
day lives of people than any other form of mathematical analysis. It is therefore essential 
that all high school graduates acquire, at the appropriate level, the capabilities identified in 
this standard. This expectation will require that statistics be given a more prominent posi-
tion in the high school curriculum. (p. 170)

Although the Standards and Moore and McCabe (1989) were about curriculum and 
content, they opened the door to an era of research in statistics education spanning 
the entire range of education starting when children begin their schooling.

The Practice of Statistics as carried out by most professional statisticians is based 
on theoretical foundations and complex procedures for handling problems with data 
that are not accessible to school students. The thesis of this chapter, built upon the 
research reported, is that the intuitions that underpin the Practice of Statistics for 
students can be developed from the early years of schooling, preparing students for 
higher level courses and/or life as statistically literate citizens. Throughout Section 
II of the handbook, the focus is on the research associated with the manner in which 
this goal can be accomplished. In particular, this chapter examines the research on 
students’ enculturation into the Practice of Statistics at the school level before 
encountering a course based on Moore et al. (2014).

This chapter initially considers several frameworks that researchers are using 
associated with the Practice of Statistics, before looking in more detail into research 
at the school level based on five stages: problem posing, planning for and collect-
ing data, data analysis via visual representation, data analysis via reducing data, 
and drawing conclusions. Included at the end of the section is consideration of 
research investigating students carrying out the entire process in one activity. 
Recognizing the complexity of carrying out the Practice of Statistics, the following 
section focuses on suggestions for the Big Ideas (or fundamental concepts) that 
underpin the Practice of Statistics. The implications of the Practice of Statistics for 
statistical literacy more generally are considered with the research in that area in 
the final section.

J. Watson et al.
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4.2  Frameworks for the Practice of Statistics

Over the years, various frameworks have been suggested to describe the Practice of 
Statistics. At the school level in 1980, Holmes was instrumental in suggesting a 
statistics curriculum for schools in England and Wales based on five components: 
data collecting, data tabulation and representation, data reduction, probability, and 
interpretation and inference. In the United States following their professional 
learning work with teachers in support of the NCTM (1989) Standards, Bright and 
Friel (1998) produced a complex concept map surrounding the four main steps of 
the “process of statistical investigation.” These steps were pose the question, collect 
the data, analyze the data, and interpret the results. From a different starting point, 
using analysis of the work of their university statistics colleagues, Wild and 
Pfannkuch (1999) suggested five stages in an investigative cycle when carrying out 
a statistical investigation: Problem, Plan, Data, Analysis, and Conclusion (PPDAC) 
(cf. Chap. 1). From these three perspectives, the Practice of Statistics involves 
carrying out a complete investigation. Implicit in all three frameworks is variation, 
which is made explicit in the four-step framework provided in the Guidelines for 
Assessment and Instruction in Statistics Education (GAISE) Report (Franklin et al., 
2007) for the school level. For every step—formulate questions, collect data, ana-
lyze data, and interpret results—the role of variability is emphasized: anticipating 
variability in writing the question, acknowledging variability in designing the data 
collection method, accounting for variability in using distributions, and allowing 
for variability in interpreting the results. Although none of the other frameworks 
preclude repeating the process as a cycle, the title used by Wild and Pfannkuch 
(1999), Investigative Cycle, emphasizes the reality that professional statisticians 
face when the conclusion of one investigation raises questions leading to another. 
Those questions are often dependent on the context of the investigation.

The need for the recognition of a context within which to practice statistics is 
often taken for granted by researchers. Unfortunately, it is also sometimes forgotten 
by textbook writers who only present algorithms for procedures such as finding the 
mean. Rao (1975) recognized this when he wrote:

Statistics ceases to have meaning if it is not related to any practical problem. There is noth-
ing like a purely statistical problem which statistics purports to solve. The subject in which 
a decision is made is not statistics. It is botany or ecology or geology and so on. (p. 152)

Wild and Pfannkuch (1999) include context in one of the other dimensions of their 
framework, types of thinking. The need for context presents statistics education 
researchers with dilemmas in terms of what knowledge students are expected to 
have of the chosen context, of how much freedom students are given in choosing a 
context, and of how much time is allocated to carry out investigations.

With these frameworks suggested as a basis for the Practice of Statistics, the 
tools employed across the steps determine the type of conclusion that can be drawn. 
The framework of Wild and Pfannkuch developed at the tertiary level is likely to use 
more sophisticated tools and theory to reach a formal inference. This led Makar and 
Rubin (2009) to introduce an informal inference for younger students, accepting 
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less sophisticated tools for analysis of data and acknowledging uncertainty in using 
evidence from data in a sample to reach a generalization about a population. The 
question that now arises is whether this is a description of the final stage of inter-
preting the results of an investigation or a move to a new framework (e.g., Makar, 
Bakker, & Ben-Zvi, 2011). Chapter 8 refines informal inference further including 
recognition of context and of the importance of aggregates, suggesting another 
alternative framework to consider.

Providing a visualization of the Practice of Statistics including all of the relevant 
facets would be very complex (cf. Bright & Friel, 1998; Watson, 2006). An attempt 
to portray the Practice of Statistics for the school classroom is shown in Fig. 4.1 
(Watson, 2016), emphasizing the acknowledgment of uncertainty (rather than proof 
as is the norm in mathematics). The point at which students enter the investigation 
may vary, but the goal is that they reach meaningful and satisfying conclusions. The 
potential for research at every stage and overall is nearly endless. Progress in this 
arena is the focus of the next section.

4.3  The Practice in Action

Given the slight variations in the descriptions of the Practice of Statistics described 
in the previous section, the following five subsections address research related to the 
GAISE framework (Franklin et al., 2007), with the splitting of data analysis into two 
parts recognizing the importance of school students having explicit experience with 
visual representation as well as with the summarizing of data with statistics. The 
subsections also correspond to Fig.  4.1 with problem posing inferred by the 
statistical question, the level of uncertainty and informal inference combined, and 
variation underpinning the entire process. The section finishes with considering the 
importance of completing an entire investigation.

Fig. 4.1 A framework for statistical investigation (Watson, 2016)

J. Watson et al.
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4.3.1  Problem Posing: Asking, Understanding, and Refining 
the Statistical Question

In terms of the educational research associated with the Practice of Statistics, for-
mulating statistical questions, that is, asking and understanding the question, has 
received little attention. There are several reasons for this. The statistical procedures 
that tend to be taught in school are those that are applied at later stages of an inves-
tigation, such as producing representations or finding measures of center and spread. 
These have often been the focus of the instruction and the research, and hence, the 
question and its context are set up for the learner. Starting with a preset question can 
also be seen as saving time as “think of a question” can set a very nebulous and dif-
ficult task for beginning students, even if the context is set. The GAISE description 
(Franklin et  al., 2007) proposes a partial reason for the difficulty of formulating 
questions, where “anticipating variation” is the key feature and “requires an under-
standing of the difference between a question that anticipates a deterministic answer 
and a question that anticipates an answer based on data that vary” (p. 11).

In statistics education where problem posing sets the stage for an entire statistical 
investigation, the question arises as to where the starting point is in terms of a learn-
ing sequence. Is the starting point the context? Is it the context combined with a 
series of appropriate and inappropriate questions? Is it the context combined with a 
series of appropriate questions appreciating the type of data and variability involved? 
In other words, where are students expected to start and how much instructional 
help are they given before they start? Arnold (2008) made an initial distinction in 
this regard related to the purpose of the questions posed: the investigative question 
is posed to interrogate the data, and the survey question is posed to obtain the actual 
data. These are considered next.

Allmond and Makar (2010) focused only on the investigative, question-posing 
part of a statistical investigation in a study that included an eight-lesson unit on 
creating investigative questions. These 9-year-old Australian students considered 
characteristics of investigative questions, sorted questions into two types using the 
criteria described by GAISE, envisaged the data required to address the question, 
refined their questions, and considered the importance of the potential solution. This 
study provided an example of backtracking (cf. Konold & Higgins, 2003). Adapting 
the work of Arnold (2008), the study then compared the levels of questions created 
on pre- and post-tasks using a seven-point hierarchy: irrelevant, non-mathematical, 
non-investigative, closed, potentially investigative, investigative, and inquiry 
(acknowledging uncertainty). Results showed much greater improvement of the stu-
dents who experienced the lessons over those in control classes that had no lessons 
on problem posing. Here, the framework for preparation for the final task was 
exceedingly explicit. The learning environment could be considered semi- structured 
in that students created their questions for a specific context set by the teacher.

A similar study based on investigations in science was carried out with Grade 6 
Singapore students by Chin and Kayalvizhi (2002). They included instruction 
between a pre-problem-posing session and a post-problem-posing session. The 
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instruction included examples of three experimental designs related to botany. As 
with Allmond and Makar (2010), they found students able to move from non- 
investigative to investigative questions after seeing the examples. For this study, the 
choice of context was free, and mostly students chose questions from a science 
context. In summarizing their research and that of others, Chin and Kayalvizhi 
suggested a nine-element typology of investigative questions. These covered 
comparison, cause and effect, prediction, design and make, exploratory, descriptive, 
pattern seeking, problem-solving, and validation of a mental model (p.  278). 
Although requiring some amplification, these types of investigation cover many 
kinds of experimental processes that can be the basis of problems posed. The GAISE 
report (Franklin et al., 2007) gives a three-stage developmental sequence of investi-
gations across Levels A, B, and C of the Guidelines related to science starting with 
performing a simple experiment, then carrying out a comparative experiment, and 
culminating with an experimental design with random assignment (p. 17). No other 
published research was found providing school students with an open-ended statis-
tical task similar to the research of Allmond and Makar or Chin and Kayalvizhi. 
Despite well-supported suggestions, for example, by Finzer and Parvate (2008) and 
Hammerman (2009), for introducing large multivariate data sets in the high school 
years in meaningful contexts and asking students (or teachers) to pose questions, 
perhaps about relationships, such activities were not discovered as subjects of 
research reports.

Another free environment approach was used by Zakaria and Salleh (2012) in 
exploring teachers’ ability to pose questions based on a raw data set of 20 numbers. 
A total of 175 Malaysian mathematics teachers were given 20  min to imagine 
contexts and pose as many statistical questions as possible. The teachers posed 365 
questions, 74% of which were considered as appropriate for a statistical investigation. 
Central tendency was the most common single topic chosen, and some problems 
included two or three topics. Few of the questions asked for a conclusion. Among 
the contexts suggested were football scores, books read by a class, and number of 
children in families.

After introductory sessions with two small groups of Canadian Grade 7 students, 
Lavigne and Lajoie’s (2007) starting point was introducing experimental and survey 
designs and providing a “library of exemplars.” The groups then devised their own 
investigative question, assisted by four prompts related to clarity of the question, the 
variable used, categories if used, and the population. Both groups decided on a survey 
design, posing one question to their classmates for data collection. For this study, it 
could be argued that the survey question and the investigative question were the same.

A different starting point was used by English and Watson (2015) who set the 
context for problem posing as investigating the school playground for four classes 
of Australian Grade 4 students. The students were to develop survey questions to 
find out their peers’ thoughts on the school playing area. There was initial discus-
sion with the class on their favorite neighborhood playground and reasons for it 
being enjoyable. Students then worked in groups of four, each student posing a 
question with four potential multiple-choice responses, for example: “What is 
your favorite thing to play in the playground? (a) Tag. (b) Offground tag. (c) Hide 
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and Seek. (d) Ghost hunter.” These were discussed and refined within the groups, 
with one question from each group being asked to the class, and then analyzed by 
the original groups. The problem posing of English and Watson was much more 
specific than that of Lavigne and Lajoie (2007), and there were no further prompts 
for how the questions should be monitored during the activity. For these Grade 4 
students who were just beginning their experience with the Practice of Statistics, 
there was no discussion of a population (as done by Lavigne & Lajoie) wider than 
their school.

As other stages of frameworks for the Practice of Statistics become saturated 
with research studies, more attention can be directed at this initial stage, even 
considering how much and what information students can access. Three other 
aspects of research on problem posing offer promise for future research on the 
Practice of Statistics. One is the point at which the student “enters the game”: how 
much information, if any, on the overall context is presented before the question(s) 
is/are posed. Second is how much general modeling and practice are provided as 
scaffolding before the task is set and during refining of the question. As little has 
been reported on the refining process while posing questions, this may be a third 
source of motivators for research.

4.3.2  Planning for and Collecting Data: A Focus on Samples 
and Sampling

The Practice of Statistics often involves collecting sample data from one or more 
population(s) and then making inferences about the population(s) from the findings 
gleaned from the sample(s). Watson (2006) suggests that “the purpose of a sample 
is to show the variation in a population so it can be characterized and summarized” 
(p. 28). Key to being able to make inferences about a population is the selection of 
the sample, the sample size, and acknowledgment of sampling variability 
(Pfannkuch, Arnold, & Wild, 2015). Issues related to these key ideas are addressed 
in the planning phase of an investigation.

When planning an investigation, students often rely on their intuitions about 
representativeness of samples developed from previous experiences that may be 
based on notions of fairness (Jacobs, 1999; Meletiou-Mavrotheris & Paparistodemou, 
2015; Rubin, Bruce, & Tenney, 1990). Jacobs studied Grade 4 and Grade 5 stu-
dents’ understanding of sampling prior to instruction by presenting them with a 
variety of sampling methods, such as conducting a raffle. About half of the students 
made decisions on the basis of the representativeness of the samples and their 
potential to avoid biased results, whereas most of the rest based decisions on other 
issues, such as those related to practicality or notions of fairness. An exploratory 
study conducted by Rubin et al. included interviews of 12 senior secondary students 
who had not taken any statistics courses. Similar to Jacobs’s study, many students 
focused on notions of fairness rather than considering the likelihood of a sample 
being representative.
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Given opportunities to develop understanding of sampling concepts, students 
have been seen to show marked improvements (Osana, Leath, & Thompson, 2004; 
Watson & Kelly, 2005). In a longitudinal study based on classroom lessons and 
using survey questions similar to those in Jacobs’s (1999) study, Watson and Kelly 
found students’ notions about samples improved in the post-instruction results as 
they progressed from Grade 3 to Grade 5. Osana and colleagues also reported 
improvement in students’ ability to use survey data rather than their own personal 
opinions and experiences. In a study across Grades 3, 6, and 9, Watson and Moritz 
(2000a) observed a six-step “hierarchy of increasing sophistication concerning sam-
ple size, selection, and resulting representativeness” (p. 63) across the grades, which 
they situated within a statistical literacy hierarchy.

More recently, research on sample and sampling variation has focused on stu-
dents’ reasoning from samples when making informal inferences. This has shifted 
the research emphasis from a focus on sample size to sampling variability (e.g., 
Pfannkuch et al., 2015). To some extent, this has been facilitated by the availability 
of technological tools that give students easy access to simulation tools and multiple 
visual representations of data. Gil and Ben-Zvi (2010) found Grade 6 students’ 
ideas about random sampling were challenged when generating multiple random 
samples from a population using TinkerPlots: Dynamic Data Exploration (Konold 
& Miller, 2015). The students were concerned that the different random samples 
showed different, sometimes contradicting, results. This appeared to undermine the 
students’ confidence in the results when making informal inferences. Conversely, 
Saldanha and McAllister (2014) used that sample-to-sample variability purpose-
fully to have students assess their confidence in informal inferences made about a 
population during an intervention that involved the exploration of the variability of 
samples of increasing size from populations of lengths of genetically modified and 
normal fish. A difficulty experienced by students was keeping mental track of the 
multi-tiered resampling, which resulted in confusing differences in median length 
with actual median lengths. Manor and Ben-Zvi (2015) developed this area of 
research further, introducing an “integrated modeling approach” to explore sam-
pling distributions with two Grade 7 students.

Most of the research on students’ understanding of samples and sampling has not 
been set within the context of the students planning investigations. One exception is 
the study conducted by Meletiou-Mavrotheris and Paparistodemou (2015) who 
provided Grade 6 students the opportunity to make informal data-based inferences 
from self-generated statistical inquiries. The researchers found the intervention 
supported the students to “further appreciate the principles underlying sampling, 
and particularly the need for adequately large sample size, and for a random-based 
sampling procedure” (p.  401). The class showed improved reasoning about the 
meaning and role of sample, role of sample size, potential sources of bias, 
representativeness of samples for population attributes, and drawing conclusions 
from multiple surveys. It also illustrated the difficulties students have transferring 
understanding of samples and sampling gained from examples provided through 
initial classroom instruction to a real-life investigation, particularly when the context 
of the initial investigation is very familiar to the students. The shift students make 
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from working in an instructional learning environment designed to lay the 
foundations of samples and sampling to the enactment of those key concepts in a 
student-driven statistical inquiry is worthy of further investigation.

To understand further the way in which students make decisions about samples 
and sampling within the planning phase of the Practice of Statistics, further research 
studies need to extend beyond providing scenarios on which students comment, 
which is demonstrated in Jacobs’s (1999) study. Studies that allow students to work 
through inquiries, as in the Meletiou-Mavrotheris and Paparistodemou (2015) study, 
should provide learning experiences that mirror the actual Practice of Statistics. The 
special issue of Educational Studies in Mathematics, in which the paper of Meletiou- 
Mavrotheris and Paparistodemou was included, was titled “Statistical reasoning: 
Learning to reason from samples.” As pointed out by Ben-Zvi, Bakker, and Makar 
(2015) in the lead article, the implications of initial sampling influence the entire 
following investigation, and this is the focus of much of the research reported in the 
special issue. The question can be raised, however, about whether sufficient research 
has been carried out on the fundamental ideas associated with sampling itself and 
subsequent application within an inquiry. In addition, research studies themselves 
require larger sample sizes to confirm the findings reported from the small-scale 
studies cited in this section. With the exception of studies by Watson and her 
colleagues (2000a, 2005) and Jacobs (1999), studies on students’ understanding of 
sample and sampling report findings from very small groups of students.

4.3.3  Data Analysis: Devising and Presenting Visual 
Representations

One of the issues that practicing statisticians face is that of cleaning data once col-
lected. At the school level, students are generally provided with data that are well-
behaved. Despite the topic being mentioned in the New Zealand curriculum at Level 
5 (Ministry of Education, 2009), no research was found that dealt specifically with 
this issue. The Australian Bureau of Statistics (2011) provides raw data from its 
CensusAtSchool site that have not been cleaned, which could provide a basis for 
research into students’ ability to clean data, as well as how to analyze them after 
being cleaned. Another issue is structuring data, one that statisticians are recognizing 
as a problem area that they need to address. How students record and organize data 
is an area of research that is only just emerging (English, 2012; Konold, Finzer, 
Kreetong, & Gaston, 2014).

Perhaps, the most significant changes in the Practice of Statistics and its teaching 
in the last decade have been brought about by the availability of technological tools 
for generating, manipulating, and representing data. “Every piece of statistical 
information needs a representation—that is, a form. Some forms tend to cloud 
minds, while others foster insight” (Gigerenzer & Edwards, 2003, p. 258). When 
analyzing data, useful representations are often graphical or visual and analysis 
often benefits from viewing data in different distributional forms. Visual 
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representations are used to tell “the story” of the data, to make meaning of statistical 
and contextual relationships, and to communicate patterns found in data (Monk, 
2003). Wild and Pfannkuch (1999) coined the term “transnumeration” to describe 
this process as one of their types of statistical thinking. In the spirit of the analysis 
phase of the Practice of Statistics, the focus should be on creating visualizations that 
“do the best job of telling the story sharply and fairly” (Konold & Higgins, 2003, 
p. 202). As Gigerenzer and Edwards demonstrate, the use of confusing representa-
tions can lead to a variety of poor decision-making. In contrast to this, Shaughnessy 
and Pfannkuch (2002) and Chick, Pfannkuch, and Watson (2005) provide examples 
of contexts where transnumeration is a pathway to clarity and understanding.

As data sets grow larger and technology continues to evolve, the Practice of 
Statistics in schools has the potential to include the use of technological tools to 
support statistical investigations as part of the routine. Many researchers have 
reported convincingly that in the presence of certain kinds of tasks using 
technological tools, younger and less statistically trained learners appear quite adept 
at reasoning in quite sophisticated ways (e.g., Ainley, 2000; Fitzallen, 2012; Lehrer, 
Kim, & Schauble, 2007; Manor & Ben-Zvi, 2015; Watson & Donne, 2009). These 
studies add strength to Pea’s (1985) suggestion that technology may provide 
cognitive tools that allow learners to interact with seemingly complex ideas in ways 
that would be impossible without the tools.

Dynamic technological tools such as TinkerPlots (Konold & Miller, 2015) and 
Fathom Dynamic Data Software (Finzer, 2012) have received significant attention 
as tools of choice for many researchers working with students and teachers. These 
tools allow users to generate, import, or input data; to conduct simulations, model, 
and test hypotheses; and to construct important linkages across representations. 
Unlike many simulation environments where students may simply engage at a 
distance, an environment like TinkerPlots allows users to explore representations 
quickly. Perhaps most importantly, and one reason for its great appeal, TinkerPlots 
was designed to incorporate students’ intuitive notions of data and representations 
and to minimize the distance, from what students’ initial thoughts and representa-
tional preferences might be, to those available in the tool (Konold, 2007). For an 
extended discussion of TinkerPlots and Fathom features, see Biehler, Ben-Zvi, 
Bakker, and Makar (2013) and Watson and Fitzallen (2016).

At the time of this publication, many additional visualization and simulation 
tools are currently available for supporting representational work (see Table 4.1), 
but the extent to which these new tools are utilized in classrooms is unknown. These 
tools range on the continuum from exploratory modeling tools where users explore 
expert built models, to expressive modeling tools, where students can construct their 
own models (Doerr & Pratt, 2008). As such, they provide different opportunities for 
learners to control the technology and therefore express their representational 
preferences and flexibility by using different representations.

The usefulness of a tool to support learning likely depends on the extent to which 
the learner is actively engaged in the construction of objects and relationships while 
representing and modeling. It is quite plausible for a learner to manipulate a 
representation while not attending to the more generalizable features of the system 
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(Fitzallen, 2013). This could explain the disappointment that some researchers have 
faced when discovering a lack of learning demonstrated by their students when 
using simulations in learning environments (Chance, delMas, & Garfield, 2004; 
Lane & Peres, 2006; Mills, 2002).

Students are often introduced to graphical representations using physical manipu-
latives and embodiments, such as Post-it Notes, objects, or counters (Chick & Watson, 
2001; Friel, Curcio, & Bright, 2001). In some cases, students create representations as 
a matter of providing a record of the data, while in other cases, they create representa-
tions “with the hope that information that is not otherwise apparent will emerge from 
them” (Monk, 2003, p. 252). Early research identified challenges associated with nov-
ice graphical creation, interpretation, and competency (cf. Friel et al., 2001). “However, 
when the constraint of drawing graphs by hand is removed, primary age children are 
able to utilize computers to work with line and scatter graphs long before they would 
typically meet them in the school curriculum” (Ainley, 2000, p. 368). Even with tech-
nological tools, inviting novice learners to generate meaningful representations with 
physical materials is still recommended as an entry point; however, the debate about 
when and how to utilize technology to augment or offload the representation burden 
for learners is ongoing and under- researched. In school settings, there has been a long 
history of teaching statistics focused on the construction of privileged representations, 
now including line plots, dot plots, pie graphs, stem-and-leaf displays, box plots, bar 
graphs, histograms, and scatterplots. What is required is more flexibility in the cur-
riculum, followed by research to explore various contexts and their relationship to 
creative representations about them (Monk).

Prior to instruction, students often create what are referred to as case value plots, 
collections of bars of lengths corresponding to the magnitude of individual cases 
(Bakker, 2004; Cobb & McClain, 2004). TinkerPlots offers a case value plot option 
that allows students to build understanding from this familiar representation and 
extend it easily to other forms, thus facilitating connections (see Fig. 4.3d). Hat 
plots, also in TinkerPlots, are newer representations that resemble box plots without 
the median line and where the whiskers are level with the bottom of the box, as 
shown in Fig. 4.2. Researchers have found hat plots useful to highlight the center 
clump in a distribution while avoiding some of the pitfalls experienced with box 
plots (Bakker, Biehler, & Konold, 2005; Watson, Fitzallen, Wilson, & Creed, 2008).

Consider the potential technological, pedagogical, and statistical demands asso-
ciated with the construction and interpretation of images in Fig. 4.3. Each figure 
represents data from an experiment modeling 50 flips of a six-sided die to estimate 
the mean roll of the die. All of the representations support seeing the data in ways 
students are expected to experience, but each provides a view that illuminates some 
things and hides others. Within and across representations, deep connections can be 
made to support strong conceptual understanding of the mean as a useful measure, 
providing a fruitful area for research.

When thinking about the use of technology, it is also important to consider who 
is using the technology and how they are using it (Fitzallen, 2013; Madden, 2013; 
Trouche, 2005). With the evolution of new tools, it is important to continue to 
conduct research on the nature of learners’ engagement and learning with the tools 
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as they conduct statistical investigations. Longitudinal studies have demonstrated 
that children as young as early elementary school can be quite capable when using 
visual representations to reason about variation and expectation (e.g., English, 
2010, 2012), but it is fair to say that most students do not yet benefit from these 
types of opportunities to learn (Lehrer et al., 2007). Further discussion of reasoning 
about distributions is found in Chap. 5.

4.3.4  Data Analysis: Summarizing and Reducing Data

Continuing from visual representations, sometimes there is the need to summarize 
or reduce data in order that the story in the data is amplified. Amplification can be 
achieved by reducing the data to measures of center and spread or through the use 
of graphical summary representations, such as the box plot. This process supports 
students in answering questions by allowing them to see the aggregate characteristics 
of data, such as center, spread, and shape, which are not evident in any of the 
individual cases (Konold & Higgins, 2003).

Much of the early research in statistics education was focused on central ten-
dency and how students conceptualized the concept in terms of representativeness, 
location, and expectation (e.g., Goodchild, 1988; Strauss & Bichler, 1988). It was 
motivated by the earlier work of Pollatsek, Lima, and Well (1981) who found col-
lege students had difficulties using effective computational skills to determine 
weighted means. Goodchild found that the students could calculate the mean but 
had underdeveloped notions of expectation and representativeness. Strauss and 
Bichler placed less emphasis on mathematical calculations and focused on students’ 
understanding of properties of the mean and their development over time.

In 1990, Russell and Mokros conducted a study with 21 each of Grade 4, 6, and 
8 students, who responded to seven construction and interpretation problems. 
Similar to the results reported by Strauss and Bichler (1988), Russell and Mokros 
reported that the students in their study were able to calculate the mean and used a 
variety of strategies to solve central tendency problems. They reported that students 
conceptualized the “average” as: “(1) average as modal; (2) average as what’s average; 

Fig. 4.2 Subtle difference between box plot (left) and hat plot (right)

J. Watson et al.



119

Fig. 4.3 Representations related to modeling 50 rolls of a six-sided die. Darkest color represents 
6; white represents 1. Graphs (a)–(e) are different representations of the same 50 values; graph f is 
a collection of 100 means from simulating 50 rolls of a die 100 times. 3.46 is the mean of the 
empirical sampling distribution

(3) average as the midpoint; and (4) average as an algorithmic relationship” (p. 308). 
In 1995, they extended the list to include average as a point of mathematical balance 
(Mokros & Russell, 1995). Similar ideas about central tendency emerged from a study 
of Grade 3 students by Makar (2014). These students, who had not been introduced 
to the mean algorithm, described central tendency in the context of measuring the 
heights of students, as (1) a reasonable height, (2) the most common value, (3) the 
middle height, (4) the normal height, and (5) representative of the population.

Exploring students’ conceptual understanding of the mean algorithm was the 
focus of a large study of 250 Grade 6 students conducted by Cai (1998). Most stu-
dents recognized the mean algorithm, but only half were able to apply the concept 
to solve open-ended questions. Watson and Moritz (1999) reported similar results 
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from their longitudinal study of Grade 3–11 students. Older students could apply 
the mean algorithm but did not use its representative property to compare data sets. 
Watson and Moritz offered a model of development of concepts of central tendency 
based on the structure of observed learning outcomes (SOLO) model (Biggs & 
Collis, 1982), with levels based on the complexity of the structure of responses—
prestructural, unistructural, multistructural, and relational. Watson and Moritz 
(2000b) extended the model to higher levels based on interviews with 94 students, 
when more complex questions were asked.

Researchers have often recommended that graphical representations be used to 
foster and build students’ understanding of central tendency (e.g., Konold & 
Harradine, 2014; Leavy, Friel, & Mamer, 2009; Lehrer, Kim, & Jones, 2011). 
Bakker, Derry, and Konold (2006), however, note the difficulties students have 
understanding the characteristics of graphical representations for this purpose, in 
particular box plots. Although box plots reduce data to a five-point summary, Bakker 
et  al. suggest that students have difficulty understanding the meaning of the 
representation because the size of the sections of a box plot is inversely related to 
the density of the data. Seeing central tendency in terms of an interval, however, is 
worthwhile, and further research with the hat plot may show it to be a useful tool 
(e.g., Watson et al., 2008).

When analyzing graphical representations, students may intuitively look at the 
shape of the distribution and be drawn to clusters and clumps of data to make 
decisions (Bakker et al., 2006; Konold, Higgins, Russell, & Khalil, 2015). During a 
study that looked at the distribution of the size of genetically modified fish and 
normal fish in a population, Bakker et al. reported that Grade 6 students used the 
notion of “clump” to refer to the majority of values in the middle of the graph before 
moving on to use the mean as a group descriptor to identify the middle clump of the 
distribution. They then used the formal mean value to compare the distributions of 
the two types of fish. Konold and Harradine (2014) also reported students aged 
12–14 identifying modal clumps as indicators of center before they used formal 
measures such as the mean when investigating a manufacturing process.

Following the work of Bakker et  al. (2006), recent studies have also been 
exploring students’ understanding from broader perspectives. Complementing 
this are suggestions from Konold and Harradine (2014), who claim that repeated 
measurements and production processes are particularly fruitful contexts for 
introducing students to statistical ideas about variation and measures of center. 
Makar (2014) also illustrated how basing the development of informal inference 
within inquiry-based learning experiences can support young students to develop 
rich conceptions of central tendency. As well in 2014, Watson, Chick, and 
Callingham considered the context within which tasks on central tendency were 
presented to 247 middle school students in surveys. They found differences in 
performance across contexts and a peak in performance at Grade 9. These studies 
illustrate the possibilities for research linking central tendency more closely to 
other stages of the Practice of Statistics.
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4.3.5  Drawing Conclusions: Decision-Making and Informal 
Inference

Historically, the development of statistical knowledge and decision-making in the 
senior school years has been attempted predominantly through the presentation of 
formal statistics, with little or no recognition of the concept of informal inference. 
Meanwhile, students in the primary and early secondary years have typically learned 
about descriptive statistics, such as measurements of center, and how to produce and 
interpret a limited range of graphs at a fairly simple level. Furthermore, the content 
has usually been taught in a piecemeal manner, where statistics and probability have 
been treated as separate topics (Bakker & Derry, 2011). Such a focus on skills, 
procedures, and computations does not lead students to develop statistical reasoning 
and thinking (Makar & Ben-Zvi, 2011) because they often do not use the tools to 
address statistical problems (Bakker & Derry). At a higher level, pre-tertiary and 
tertiary statistics courses usually begin to address inferential statistics through the 
derivation, application, and/or interpretation of theoretical models. Such courses 
may also develop students’ mechanistic application of methods (Ben-Zvi & Garfield, 
2004) as distinct from knowledgeable decision-making, thereby doing little to 
advance the statistical reasoning and literacy of those students who do engage in 
higher-level courses (Zieffler et al., 2008).

The difficulties of studying formal statistical inference at high school and tertiary 
levels have been documented in research (e.g., Garfield & Ben-Zvi, 2008) with the 
suggestion that problems may stem from students’ inexperience with the 
underpinnings of statistical inference (Pfannkuch, 2005). Pratt, Johnston-Wilder, 
Ainley, and Mason (2008) suggest that informal approaches to inference could, and 
should, underpin pre-formal statistics education. To have students take such an 
approach requires an appreciable shift in the way that students address statistics. 
Fortunately, there has been a surge in research in the last decade to address how 
students can be supported to engage with inference informally.

As noted earlier in relation to frameworks, the research on informal inference is 
now suggested as the process underpinning the entire Practice of Statistics at the 
school level before formal theories are employed (cf. Chap. 8). Using the phrase 
“informal inference” in relation to other frameworks emphasizes a distinction in the 
type of evidence collected and the type of analysis performed. The focus on 
uncertainty related to the sample-population relationship is implicit in the other 
frameworks, but research may show that making it more obvious results in greater 
understanding by students. It may also foster greater transfer of the fundamental 
requirement for uncertainty in later encounters with statistics.

An informal inferential approach serves to make the development of statisti-
cal underpinnings available from very early stages, for example, with emergent 
inferential practices being developed with 5-year-olds (Makar, 2016) and with 
9-year-olds (Watson & English, 2015). One of the most significant contributions 
enabling advancements in informal reasoning has been progress made in tech-
nology that enables data visualization and manipulation at an early age, for 
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example, with TinkerPlots (Watson & Fitzallen, 2016), as well as randomization 
procedures for older students, for example, with iNZight (Budgett, Pfannkuch, 
Regan, & Wild, 2013).

4.3.6  The Importance of Learning Through Complete 
Investigations

Having considered the components of the Practice of Statistics, it is relevant to 
consider research on combining the components in a complete investigation. 
Most consultant statisticians are provided with a context and a question or ques-
tions to answer when employed to carry out their Practice of Statistics. Is it then 
realistic to ask school students to find meaningful contexts and questions that 
lead to the application of the statistical tools with which they are familiar? 
Although Chin and Kayalvizhi (2002) and Lavigne and Lajoie (2007) gave con-
siderable freedom to students to pose questions, the inclusion of scaffolding 
examples influenced the results. Accepting the dictate of Rao (1975) that there 
can be no statistics without context, it seems reasonable to begin statistical 
investigations at school with a meaningful overall topic for inquiry. This is also 
practical for the classroom teacher in terms of personal expertise and time 
constraints.

Accepting that the Practice of Statistics begins within an agreed context, the 
question then becomes related to the age at which exposure to the Practice of 
Statistics should occur. The National Council of Teachers of Mathematics (NCTM) 
in the United States in its 1989 Standards for early childhood set a firm foundation.

For grades K-4, the mathematics curriculum should include experiences with 
data analysis … so that students can:

• Collect, organize, and describe data.
• Construct, read and interpret displays of data.
• Formulate and solve problems that involve collecting and analyzing data (p. 54).

Twenty years later, the US Common Core State Standards: Mathematics (CCSSI, 
2010) ignored consideration of statistical topics until Grade 6 and introduced 
statistical investigations in Grade 7. At this time, however, the New Zealand 
Mathematics and Statistics curriculum (Ministry of Education, 2009) was renamed, 
and “Statistical investigation” was one of the three subheadings for Statistics at 
every level of the curriculum. At Level 1, students:

Conduct investigations using the statistical enquiry cycle:

 – Posing and answering questions
 – Gathering, sorting and counting, and displaying categorical data
 – Discussing the results
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The research of Fielding-Wells (2010), however, suggests that students experi-
ence considerable difficulty in envisioning and understanding the power and poten-
tial of statistics when addressing the initial stages of an investigation. This result 
may be an indication that learning experiences should initially expose students to 
the later stages of the Practice of Statistics where they can experience the purpose 
and success of reaching a decision on a question posed by others. This could be the 
basis for future research programs.

In a classroom environment, it is likely that, even when setting a well-defined 
context, the entire process from posing a question through drawing a conclu-
sion, completing the entire investigation, will be very time-consuming on its 
own. One of the few studies claimed to report on an entire statistical investiga-
tion is that of Lavigne and Lajoie (2007). The authors also followed the stu-
dents’ data collections, data analyses, and data representations, identifying ten 
types of reasoning potentially present in each of the four phases of the inquiry. 
In a study with Grade 5 students, Watson and English (2015) set a general ques-
tion about deciding if different populations were environmentally friendly. 
Students contributed to the problem posing by setting criteria for being environ-
mentally friendly based on five questions about behavior, such as having shorter 
showers and recycling rubbish. They collected and analyzed data first from their 
class and then from random samples taken from a national database of Grade 5 
students. Based on the evidence from their samples, students drew informal 
inferences for the different populations of Grade 5 students, justifying their 
confidence in the decision each time.

A somewhat different hierarchical classification for analyzing students’ work as 
they progress through an investigation is suggested by Fitzallen, Watson, and 
English (2015). Growing out of the SOLO model, the levels are assigned for each 
stage of the Practice of Statistics. The investigation as a whole is then classified by 
how the outcomes of the four stages are combined to make a decision. Another 
recent approach is that of Fielding-Wells and Makar (2015) who used an argumenta-
tion framework stressing the need for evidence to build understanding and to ana-
lyze students’ development of informal inference acknowledging uncertainty. This 
area is one that requires continuing research, which although complex and time-
consuming, should be very rewarding. One approach is to ask students to write a 
final report, describing every stage of the investigation (Forster & Wild, 2010). This 
focus on report writing needs to receive attention at lower levels as well where stu-
dents often give oral presentations on their findings (English, 2015).

The realization that the planning and facilitating of complete investigations at 
school level can be onerous has led to research on helping teachers implement such 
programs. In this situation, teachers may be only marginally ahead of their students 
in terms of understanding the content and the implementation of the Practice of 
Statistics (Burgess, 2011). Based on case studies with teachers, Burgess considers 
types of content and pedagogical knowledge needed by teachers in order to use 
statistical investigations in the classroom in relation to the PPDAC cycle. Santos and 
Ponte (2014) present a detailed case study of a preservice primary teacher’s 
experience in learning about statistical investigations and implementing one in a 
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Grade 3 class. Working through the PPDAC cycle, the authors illustrate the value of 
exploring teachers’ understanding in depth and the many issues for beginning 
teachers with limited experience themselves. The rewards and difficulties of 23 
in-service teachers during their first inquiry-based lessons with their students 
following professional development are explored by Makar (2010). She concludes 
that the initial experience can be frustrating due to the uncertainty of data outcomes, 
the logistics of the classroom activity, and content concerns. Makar and 
 Fielding- Wells (2011) make specific suggestions, based on other research and their 
own, for assisting teachers at each of the five stages of the PPDAC cycle. At the 
secondary level, Madden (2011) suggests introducing teachers to provocative tasks 
to motivate complete investigations and informal inference. Batanero, Burrill, and 
Reading (2011) present insights that could be the basis for further research related 
to the teacher educator’s role in assisting teachers to handle the Practice of Statistics 
in the classroom.

Finally, in thinking about carrying out an investigation, it is important to 
acknowledge the potential for occasional or even frequent backtracking 
depending on the obstacles or revelations met along the way. Often, the final 
report on a statistical investigation does not report details about the backtrack-
ing, but only about the successful path followed through the investigation, 
which may give students a false sense of security about the ease with which 
they can carry out the Practice of Statistics. Students hence are likely to benefit 
from experiencing complete statistical investigations themselves: to feel the 
uncertainty, the occasional frustration, the necessity to rethink at various 
points, perhaps the necessity to backtrack to rethink the questions or represent 
the data differently, and finally the task of writing a reasonable report on the 
entire investigation and its outcome. Although Konold and Higgins (2003) 
address issues of looking forward and backward while carrying out an investi-
gation, no research was found on focusing specifically on students experienc-
ing this phenomenon.

As there are very few classroom studies based on students carrying out a com-
plete statistical investigation, there are many opportunities and questions for 
researchers to consider about the Practice of Statistics at school. Are some stages of 
the practice more difficult than others? If so, which are they and why are they more 
difficult? Does difficulty depend on the context, implying that the most difficult 
stages are different for different contexts? Is long-term retention greater for the 
stages of the practice if they have been embedded in a meaningful context than if 
they have been taught in an isolated manner? Does the exposure to complete inves-
tigations and drawing informal inferences at school build the appropriate founda-
tion for formal inference when introduced at the college level? Given the difficulties 
some tertiary students have in interpreting p-values (e.g., Reaburn, 2014), it might 
be expected that the earlier experience would provide a meaningful conceptual 
framework when the more sophisticated tools are employed.
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4.4  The Big Ideas

As seen in this chapter, there is general agreement, with minor variations, on the 
purpose of the Practice of Statistics being to solve problems by conducting 
investigations. In this potentially complex environment, the foundational concepts 
that underpin the Practice of Statistics in carrying out a statistical investigation are 
also a focus of researchers’ attention. Often described as Big Ideas, there is some 
debate on how many of these fundamentals there are.

In the summary to their book on statistical literacy, reasoning, and thinking, 
Ben- Zvi and Garfield (2004) presented a list of eight Big Ideas adapted from the 
work of Susan Friel. The eight Ideas were data, distribution, trend, variability, 
models, association, samples and sampling, and inference (p.  400). In a later 
work, Garfield and Ben-Zvi (2008) added a ninth Big Idea, Comparing Groups. 
Burrill and Biehler (2011) did not use the adjective “big” but introduced seven 
“fundamental” statistical ideas as critical for teachers to know and convey. These 
agree well with the Big Ideas of Ben-Zvi and Garfield. Big Ideas were also a fea-
ture of the NCTM books on essential understanding of statistics for Grades 9–12 
(Crites & St. Laurent, 2015; Peck, Gould, & Miller, 2013). Rather than single 
terms or phrases, the five Big Ideas were couched in sentences summarizing a 
total of 24 essential understandings:

Big Idea 1. Data consist of structure and variability.
Big Idea 2. Distributions describe variability.
Big Idea 3.  Hypothesis tests answer the question, “Do I think that this could have 

happened by chance?”
Big Idea 4. The way in which data are collected matters.
Big Idea 5.  Evaluating an estimator involves considering bias, precision, and the 

sampling method (Crites & St. Laurent, 2015, pp. 127–128).

In 2013, Watson, Fitzallen, and Carter were asked by the Australian Association 
of Mathematics Teachers to present five (only) Big Ideas for teaching and learning 
statistics in Grades 6–10. This restriction resulted in the five ideas shown in Fig. 4.4, 
which were an attempt to provide foundations for planning and carrying out a 
statistical investigation before the introduction of formal inference. In doing so, the 
figure shows all of these Big Ideas as closely related throughout the Practice of 
Statistics; it is not based on stages in which an investigation is carried out. In fact, 
variation is an influence at every stage of the Practice of Statistics.

The claim that variation is the “most fundamental” of the Big Ideas (Moore, 
1990) is now recognized in the school curricula of Australia in Foundation to 
Year 2 (Australian Curriculum, Assessment and Reporting Authority [ACARA], 
2015), of New Zealand at Level 4 (Ministry of Education, 2009) and of the 
United States in Grade 6 (CCSSI, 2010). At the middle school level, the term 
expectation, as used in Fig. 4.4, reflects both the potential outcomes of data anal-
yses, perhaps initially expressed as hypotheses, and the elementary probabilities 
of chance outcomes. Historically, in the curriculum and classroom, expectation 
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was encountered first in measures of center before variation in the guise of stan-
dard deviation (Shaughnessy, 1997). Watson’s research (2005, 2009), however, 
suggests that children develop an appreciation of variation before an apprecia-
tion of expectation (Fig. 4.4). Shaughnessy (2006) reflects this foundational sta-
tus of variation and expectation in his choices of the two Big Ideas in statistics 
arising from the work of Wild and Pfannkuch (1999). Wild (2006) provides the 
essential background on the importance of distribution (cf. Fig. 4.4) as the lens 
through which variation in data is viewed and hence analyzed. Distributions pro-
vide ways of visualizing data that allow for decisions to be made about questions 
related to expectation. Randomness arises in processes that have unpredictable 
individual outcomes but display patterns over the long term (cf. Moore, 1990). 
Randomness in samples of sufficient size and incorporated in experimental 
design is the basis for increased confidence in informal inferences. At the school 
level, informal inference encompasses the type of decision- making that occurs in 
statistics (cf. Chap. 8).

With this fundamental acknowledgement of Big Ideas, the Practice of Statistics 
becomes more than a series of procedures to reach a decision. One of the future 
directions of research is to devise studies that not only involve diverse procedures 
for the Practice of Statistics but also help students understand and appreciate the Big 
Ideas behind them.

4.5  Statistical Literacy: Assessing the Claims of Others

Until this point, Chap. 4 has been about the actual Practice of Statistics, doing statis-
tics. In situations outside of the school classroom, involvement with statistics is not 
always, or perhaps even often, about practicing statistics but about judging the 

Fig. 4.4 Interrelated Big Ideas underlying statistics in the classroom (Watson, Fitzallen, & 
Carter, 2013)
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outcomes and claims of others who practice statistics. In most situations, one has to 
decide if data are sound, if graphs presented are appropriate and correct, if the “aver-
age” chosen suits the context, and/or if the decision reached is believable. One also 
sometimes needs to explain what is wrong and why. This process requires the ability 
to argue effectively, an aspect that has received recent attention in relation to infor-
mal decision-making. As formulated by Toulmin, Rieke, and Janik (1984), argumen-
tation takes two forms: inquiry and advocacy. Fielding-Wells and Makar (2012, 
2015) and Makar, Bakker, and Ben-Zvi (2015) focus on argumentation as part of 
inquiry involving informal inference. Assessing claims of others, however, is likely 
to require argumentation associated with advocacy. This involves recognizing the 
advocacy in the claim and the ability to advocate with evidence for an alternate 
claim.

As Gal (2002) states for adults, statistical literacy is:

 (a) The ability to interpret and critically evaluate statistical information, data- 
related arguments, or stochastic phenomena, which they may encounter in 
diverse contexts, and when relevant

 (b) The ability to discuss or communicate their reactions to such statistical infor-
mation, such as their understanding of the meaning of the information, their 
opinions about the implications of this information, or their concerns regarding 
the acceptability of given conclusions (p. 2)

The assumption may be that after one has completed an education based on the 
content and pedagogy described throughout this chapter, one would be statistically 
literate in Gal’s sense. Experiencing the “correct” way to practice statistics, how-
ever, may not train one to be a detective in other contexts, to know what questions 
to ask, and to be able to explain the difference between what is observed and what 
is legitimate.

The close relationship of statistical literacy to the Practice of Statistics itself, 
however, has meant that on some occasions, the distinction becomes blurred. 
Although perhaps taught side by side, there must be awareness by curriculum 
designers and teachers of the requirements of each. This is recognized in the school 
curriculum of New Zealand where Mathematics and Statistics (Ministry of 
Education, 2007) has within the Statistics section at every level a subheading of 
“statistical literacy” at the same standing as the subheading for “statistical 
investigation.” Although not as extensive as statistical investigation, statistical 
literacy acknowledges the importance of students being able to apply their 
understanding in various contexts. In Australia, the General Capabilities (ACARA, 
2013) expected of all students across the curriculum, under numeracy, include an 
element, “interpreting statistical information.” Although not using the word 
“literacy,” the description fits closely that of statistical literacy. In the United States, 
Statistical literacy is not specifically mentioned in the Standards for Mathematical 
Content section of the Common Core (CCSSI, 2010). In the Standards for 
Mathematical Practice section, however, the third listed practice is “construct viable 
arguments and critique the reasoning of others.” Within the description, students:
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reason inductively about data, making plausible arguments that take into account the con-
text from which the data arose … [They] are also able to compare the effectiveness of two 
plausible arguments, distinguish correct logic or reasoning from that which is flawed, and 
if there is a flaw an argument—explain what it is. (pp. 6–7).

A framework for learning, applying, and assessing statistical literacy is suggested 
by Watson (2006). The three tiers of statistical literacy form a hierarchy:

Tier 1: Understanding the terminology to be used for statistical decision-making
Tier 2: Interpreting the terminology in the context presented
Tier 3:  Possessing the ability and confidence to challenge statements made in the 

context without proper statistical foundation

Claims requiring Tier 3 assessment may be correct or incorrect, which is why 
developing critical thinking skills is important. The use of the hierarchy for assessing 
statistical literacy is illustrated by Watson and Moritz (2000a) for survey items 
related to sampling. This framework, particularly Tier 3, provides settings for 
research on argumentation related to advocacy, as noted earlier. This could be a 
fruitful area of future research given the frequent appearance of motivating contexts 
in the media.

Watson and Callingham (2003) used 80 items and a sample of over 3000 
students to suggest a general six-level hierarchy of understanding with two lev-
els approximating each of the three tiers of the statistical literacy hierarchy. 
Some of the items used can also assess understanding associated with the data 
collection stage of carrying out a statistical investigation, but they do not cover 
all aspects of the Practice of Statistics. Watson and Callingham included items 
in their analysis that assessed probabilistic literacy as well as statistical literacy 
as in most school curricula they are considered under the same heading (e.g., 
ACARA, 2015; CCSSI, 2010; Ministry of Education, 2009). Gal (2005), how-
ever, has suggested some aspects of probabilistic literacy that distinguish it 
from statistical literacy, particularly noting independence. The recent work in 
the LOCUS (Levels of Conceptual Understanding in Statistics) project has the 
aim of creating items to assess all aspects of the Practice of Statistics from a 
statistical literacy perspective (Whitaker, Foti, & Jacobbe, 2015). As implied in 
the project’s name, the assessment items measure conceptual, rather than proce-
dural, understanding based on the GAISE framework. Using both open-ended, 
as well as multiple-choice questions, assessments are more comprehensive than 
the surveys of Watson and Callingham (2003) in their reflection of the complete 
Practice of Statistics.

Beyond the classroom, the contexts that require statistical literacy vary tremen-
dously. This has led to many different approaches to research in the area. In 2002, 
the Sixth International Conference on the Teaching of Statistics, ICOTS6, included 
a keynote address, a panel discussion, and six papers in a special session on statisti-
cal literacy. Opinions differed on the diversity in and kinds of statistical literacy 
(Murray & Gal, 2002; Schield, 2002), on what citizens should know (Moreno, 
2002; Utts, 2002), and on how to reach the level required (Boland, 2002; Botting & 
Stone, 2002; Phillips, 2002). It was 12 years later when ICOTS9 for the first time 
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had an entire topic devoted to statistical literacy in the wider society, with five sub-
topics, including requirements (e.g., Hovermill, Beaudrie, & Boschmans, 2014) and 
assessment (e.g., Bidgood, 2014), as well as studies following student development 
(e.g., Sproesser, Kuntze, & Engel, 2014). Outside of the specific topic, there were 
papers featuring statistical literacy within other topics focusing on the workplace 
specifically, reporting on international collaborations to assist in-service teachers 
(e.g., North, Zewotir, & Gal, 2014), relating progress in different countries (e.g., 
MacFeely & MacCuirc, 2014), and specializing in areas such as risk literacy 
(e.g., Till, 2014) or applying knowledge reading scientific journals (e.g., Esfandiari, 
Sorenson, Zes, & Nichols, 2014). The variety of research reports from ICOTS not 
only shows topics currently under scrutiny but also opens the imagination to many 
future research opportunities.

In this section, it has been suggested that students’ engagement in the Practice of 
Statistics at school might be sufficient to produce statistically literate citizens. There 
is also the question, however, as to whether it is necessary. Is it possible to become 
statistically literate without hands-on experience, perhaps by reading good books or 
viewing instructional videos on the topic? This is an unanswered research question 
for which it would take well-designed research spanning many years to answer.

4.6  Summary

The themes of this chapter provide an avenue into Section II of the Handbook 
from the perspective of the Practice of Statistics. After summarizing several use-
ful frameworks for carrying out the practice, research on five stages was intro-
duced in more detail. The areas with the greatest possibilities for further research 
appear to be posing and refining questions, planning and collecting data, and 
drawing conclusions while acknowledging uncertainty. Research could fruitfully 
consider the importance of the stage at which students are initially exposed to 
the Practice of Statistics. Should students start at the very beginning by posing ques-
tions or first experience later stages in order to appreciate the purpose of the inves-
tigative process?

Does introducing the Practice of Statistics at the school level with motivating 
contexts and stimulating questions have the potential to improve the attitudes of 
students to a subject that has traditionally received “bad press” at more senior 
levels? Experiencing informal inference with the type of evidence from data 
available at the school level and appreciating uncertainty in decision-making are 
important contributors both to being statistically literate citizens and to understanding 
formal statistical inference at the tertiary level. The confidence gained from 
embracing the Practice of Statistics at school can be hypothesized to provide a 
concrete foundation for theoretical tertiary study. Research over a long period of 
time would be needed to support the claim!

Perhaps the most contentious question, raised at the end of the previous section, 
facing researchers and curriculum designers is, “Can students leave school 
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statistically literate without having experienced the Practice of Statistics during 
their years of schooling?” Is the experience necessary? The authors of the New 
Zealand curriculum (Ministry of Education, 2007) may have solved the problem by 
presenting the topics “statistical investigation” and “statistical literacy” side by side 
across the years of schooling. If all students experience the Practice of Statistics as 
well as being exposed to statistical literacy, then the research question would appear 
to become one of sufficiency. Given the concerns of Zieffler et  al. (2008) at the 
tertiary level, however, a call for research across the years of learning seems to be 
appropriate.

The Big Ideas underlying the Practice of Statistics continue to evolve as research 
expands across the levels of education where they are encountered. It is essential 
that research related to the Practice of Statistics, in whatever form it is introduced, 
include understanding of the fundamental concepts as well as carrying out the 
procedures. Many more specific research questions arise about the Practice of 
Statistics in the rest of the chapters in this Handbook. Although there has been a 
surge of research in the last 20 years, there are still many more puzzles to solve 
related to statistical thinking.
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Chapter 5
Reasoning About Data

Rolf Biehler, Daniel Frischemeier, Chris Reading, 
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Abstract Many decisions in politics, economics, and society are based on data and 
statistics. In order to participate as a responsible citizen, it is essential to have a solid 
grounding in reasoning about data. Reasoning about data is a fundamental human 
activity; its components can be found in nearly every profession and in most school 
curricula in the world. This chapter reviews past and recent research on reasoning 
about data across all ages of learners from primary school to adults. Specifically in 
this chapter, the term reasoning about data is defined, the implementation of reason-
ing about data in the curricula of different countries is investigated, and research 
studies of learner reasoning about distribution, variation, comparing groups, and 
association, which are fundamental concepts when reasoning about data, are 
reviewed. The research review presented includes references to existing frameworks 
and taxonomies that can assess learner reasoning in regard to these concepts and 
discusses the influence of digital tools to enhance learner statistical reasoning. 
Finally, some insights for future directions in research about reasoning about data 
are provided.
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5.1  Introduction

“Data really powers everything that we do!” (Jeffrey Weiner, chief executive of LinkedIn)

The purpose of this chapter is to provide an overview of research on reasoning 
about data across all age levels. Four general phases can be identified in a data 
analysis process (e.g., Graham, 1987; Kader & Perry, 1994; Wild & Pfannkuch, 
1999): (1) pose a statistical question and generate a hypothesis, (2) collect data, (3) 
analyze data, and (4) interpret the results and communicate conclusions. This chap-
ter emphasizes the last two phases, analyzing data and interpreting results, focusing 
on research that looks at students and learners’ reasoning about variation, distribu-
tion, group comparisons, and associations between variables.

The chapter highlights frameworks and taxonomies that can help to understand a 
learner’s reasoning, as well as provide insight into the development of research in a 
specific domain. Since there is much research based on the Structure of Observed 
Learning Outcome (SOLO) Taxonomy (Biggs & Collis, 1991), the discussion also 
highlights aspects relevant to SOLO. Furthermore, different sections of this chapter 
outline possibilities and potentials to use technology to support a better and more 
sophisticated reasoning about data.

This chapter provides a historical perspective on the evolution of research in 
student reasoning about data. Earlier work on conceptual frameworks describing 
student reasoning about data led to more focused research on concepts such as vari-
ation and distribution. The chapter is divided into seven sections. Section 5.2 con-
siders general elements in regard to reasoning about data and presents several 
frameworks on reasoning about data. Section 5.3, on “reasoning about variation,” 
includes reasoning in contexts and provides an overview of research across all age 
levels with a special focus on developmental hierarchies of reasoning. Section 5.4, 
on “reasoning about distribution,” includes perspectives on the concept of distribu-
tion and research on student reasoning about distribution, including developmental 
models. Section 5.5, on “reasoning when comparing groups,” distinguishes several 
facets of group comparisons and reviews research on comparing groups with stu-
dents and pre- and in-service teachers. Section 5.6, on “reasoning about associations 
between variables,” focuses on studies regarding learners’ reasoning about associa-
tions in contingency tables and between numerical variables. The final section con-
cludes the chapter with a discussion and an outline for further research.

5.2  Reasoning About Data

This section begins with a discussion of some examples of positions on reasoning 
about data put forth in four national curriculum recommendations for statistics edu-
cation (Australia, Germany, the United States of America, and New Zealand). The 
section ends with some broad-based perspectives from research on frameworks for 
researching student reasoning about data. Thus, the section provides a foundation 
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for the remaining sections in the chapter that delve in more detail into research on 
students’ reasoning about some major concepts in data: variation, distributions, 
comparing groups, and association.

5.2.1  Some National Recommendations on Reasoning 
About Data

Over the past 25 years, the inclusion of statistics and probability in national school 
curricula has continued to grow in prominence. Many nations now provide curricu-
lar documents that list, and in some cases discuss, the topics or concepts that should 
be included in the statistical education of elementary and secondary school students 
at various grade levels. For example, in Australia, guidelines for Foundation 
(Kindergarten) to Year 7 (ages 4–12) concentrate primarily on the construction and 
comparison of a range of data displays, while guidelines for Year 8 and Year 9 have 
students explore variation of means and proportions in random samples, look at 
shapes of distribution, learn about sampling distributions, and compare distributions 
using measures of center and variation. In later school years, the Australian curricu-
lum (n.d.) concentrates more on probability models, introduces random variables, 
and begins statistical inference (ACARA, n.d.). Thus, in Australia a trajectory for 
students’ statistical education has been laid out for every year they are in elementary 
and secondary schools.

In Germany, guidelines for Grades 1–4 similarly concentrate on collecting and 
representing data as well as on how to use representations of data (Hasemann & 
Mirwald, 2012). Grades 5–10 concentrate on data analysis, interpretation, and 
developing arguments based on data (KMK, 2004). The education competency 
standards for mathematics in Grades 11–13 include inference from samples to pop-
ulations, simulations, probability distributions, and hypothesis testing (KMK, 
2012).

The recommendations for statistical education of students in Germany and 
Australia appear to be quite similar. Early grades concentrate on exploring and rep-
resenting data. The middle grades ask students to carry out more detailed analysis 
of data and to begin to make arguments based on reasoning about data (this appears 
to start earlier in Germany, Grades 5–10, than in Australia, Grades 8 and 9). Upper 
secondary school students in both countries begin to make inference from samples, 
explore sampling distributions, and begin to do some hypothesis testing.

For more than 20 years, detailed recommendations for the statistical education of 
Grades pre-K–12 students have been published in the standards documents of the 
National Council of Teachers of Mathematics (2000; NCTM, 1989; Shaughnessy, 
Chance, & Kranendonk, 2009). The recommendations for data analysis and proba-
bility in the Principles and Standards document (NCTM, 2000) are elaborated 
under four main clusters for students in four grade bands (Grades pre-K–2, 3–5, 
6–8, and 9–12). These four clusters state that instructional programs in data analysis 
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should enable students to: (i) formulate questions that can be addressed with data, 
(ii) select and use appropriate statistical methods to analyze data, (iii) develop and 
evaluate inferences and predictions based on data, and (iv) understand and apply 
basic probability concepts. In recent years, the Common Core State Standards for 
Mathematics (Common Core State Standards Initiative, 2015) have been adopted 
by a number of states in the United States of America, and they include clusters of 
statistics and probability standards for Grades 6–11. The middle school clusters 
start with understanding variability and summarizing and describing distributions of 
data (Grade 6), continue with inference from a sample to a population and informal 
comparative inferences about two populations (Grade 7), and conclude with asso-
ciation and bivariate data (Grade 8). The secondary standards interweave probabil-
ity models and approaches to statistical inference, including hypothesis testing via 
simulations and bootstrapping. Unlike the NCTM recommendations, the Common 
Core Standards do not include recommendations for reasoning about data in Grades 
3–5. However, the use of displays for measurement data is a topic that is included in 
the elementary years in the Common Core.

National curricula documents do not always include sufficient detail on the 
importance of reasoning about data, or what such reasoning about data would 
involve. An exception can be found in New Zealand where the statistics curriculum 
has made recommendations for the inclusion of the processes students should expe-
rience in conducting investigations using the statistical investigation cycle (Ministry 
of Education, 2007). The German standards also refer to process skills related to 
data analysis (KMK, 2004). The NCTM standards for statistics and data analysis 
were available to many other countries as they established their own recommenda-
tions for statistics education and were likely to have been an influence on the devel-
opment of statistics standards in Australia, Germany, and New Zealand, among 
other countries.

Some professional statistics organizations such as the American Statistical 
Association (ASA) have published detailed recommendations for students to engage 
in the process of reasoning about data. The pre-K–12 GAISE1 report of the ASA 
contains recommendations for data analysis for elementary, middle, and secondary 
level students (Franklin et al., 2007). Reasoning about data in the pre-K–12 GAISE 
report goes far beyond just a bulleted list of topics that one may find in many national 
curriculum documents. The pre-K–12 GAISE report recommends that students 
should” develop strategies for producing, interpreting, and analyzing data to help 
answer questions of interest. In general, students should be able to formulate ques-
tions that can be answered with data; devise a reasonable plan for collecting appro-
priate data through observation, sampling, or experimentation; draw conclusions 
using data to support these conclusions; and understand the role random variation 
plays in the inference process” (Franklin et al., 2007, p. 61). In the pre-K–12 GAISE 
report, the entire process of reasoning about data is anchored in the importance of 
posing a statistical question in the first place.

1 There is also a GAISE report for the statistical education of college students.

R. Biehler et al.



143

The recommendations for pre-K–12 statistics education contained in these 
national documents and statistics organizations have undoubtedly led to the devel-
opment of a number of curriculum innovations and the development of statistical 
materials for teaching over the past three decades. However, statistics curriculum 
materials are not a topic that is within the purview of this chapter. Given these many 
recommendations about what students should experience in their statistics educa-
tion, the interesting question for research is: How do students reason about data 
when given opportunities to do so? The next section considers frameworks that may 
be useful to researchers who are interested in exploring students’ statistical reason-
ing about data.

5.2.2  Frameworks on Reasoning About Data

Early twenty-first century statistics education research found researchers striving to 
build conceptual frameworks to interpret students’ statistical reasoning. Some such 
frameworks for statistical reasoning were based on hypothesized statistical pro-
cesses. For example, Jones, Langrall, Mooney, and Thornton (2004) analyzed the 
empirical responses of middle school and elementary school students to statistical 
tasks and represented the identified diverse aspects of reasoning about data based on 
four key statistical processes: describing data, organizing data, representing data, 
and analyzing and interpreting data. Their investigation led them to suggest descrip-
tors for four levels of increasingly sophisticated student reasoning about data: idio-
syncratic, transitional, quantitative, and analytical. Their work suggested that future 
research is needed to analyze responses to similar tasks from older learners to see 
whether the four levels of reasoning about data (idiosyncratic, transitional, quantita-
tive, and analytical) can be validated and extended to reasoning by secondary and 
tertiary students. For a more detailed description of this model and an analysis of 
early models of development in statistical reasoning, see Jones et al. (2004).

Conceptual frameworks that focus on reasoning about specific statistical con-
cepts (e.g., centers, variability, distribution) or particular statistical processes (e.g., 
organizing data, reducing data) may themselves be anchored in more general theo-
retical models of reasoning. In particular, the Structure of Observed Learning 
Outcome (SOLO) Taxonomy (Biggs & Collis, 1991) has been utilized by a number 
of researchers to analyze and characterize levels of increasing complexity of under-
standing demonstrated in student responses to statistical tasks. This taxonomy is a 
neo-Piagetian model of cognitive development created to analyze the complexity of 
student responses to tasks and was developed by Biggs and Collis (1991) as a gen-
eral model for evaluating learning in any context or environment. SOLO identifies 
five modes of functioning (sensorimotor, ikonic, concrete-symbolic, formal, and 
post-formal), with a number of achievements identifiable within each of these 
modes. The two modes most relevant to school-aged student reasoning are the 
ikonic mode (making use of imaging and imagination) and the more cognitively 
complex concrete-symbolic mode (operating with second-order symbol systems 
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such as written language). The formal mode (reasoning that generates generaliza-
tions that both incorporate and transcend particular situations) is often not observed 
in responses until students are learning at late secondary or tertiary levels. Although 
these modes are similar to Piagetian stages, there is an important difference. Earlier 
modes in the SOLO Taxonomy are viewed as being used to support growth in later 
modes rather than as being replaced by later modes.

Within each of these modes, a series of levels of increasing cognitive develop-
ment has been identified. The three levels most commonly reported in research are: 
unistructural (U) responses, which focus on one relevant aspect of the task; multi-
structural (M) responses, which focus on several relevant aspects separately; and 
relational (R) responses, which focus on several relevant aspects in which interrela-
tionships are identified. These three levels form a cycle of cognitive growth, from U, 
through M, to R that occurs within each mode. For example, Reading and Reid 
(2006) studied students’ reasoning about distribution based on a variety of in-class 
tasks and described a hierarchy for coding responses, within the concrete-symbolic 
mode, based on the aspect key element of distribution. A U level response focused 
on one element of distribution (e.g., center, spread, density, skewness, or outliers), 
an M level response focused on multiple elements of distribution without linking 
them, and an R level response integrated all available elements of distribution into 
the response.

Overall, SOLO has proven to be a useful research tool for statistics educators 
since it is designed to assess responses to open-ended complex tasks that can elicit 
a hierarchy of student reasoning. As researchers have focused more on specific sta-
tistical domains or concepts, they have been able to investigate reasoning in more 
depth, which at times has resulted in the need to describe more than one U-M-R 
learning cycle (e.g., Reading & Reid, 2006; Watson & Moritz, 1999, 2000). Some 
researchers believe that when there are two such cycles, the first cycle of learning 
relates to the development of the concept, while the second cycle deals with the 
consolidation and application of the concept (Jones et al., 2004).

However, researchers have discovered that generalized descriptions (such as 
those in SOLO) do not always provide enough detail to represent all the important 
aspects of reasoning about data. The result has been the development of a number 
of domain-specific and concept-specific reasoning frameworks relevant to reason-
ing about data. In a review of the research literature on statistics learning and rea-
soning, Shaughnessy (2007) noted that researchers were beginning to build 
developmental conceptual frameworks of student reasoning about centers (Watson 
& Moritz, 2000), graphs (Friel, Curcio, & Bright, 2001), and variability and distri-
bution (Bakker & Gravemeijer, 2004; Saldanha & Thompson, 2003; Shaughnessy, 
Ciancetta, & Canada, 2004). Some of the developmental frameworks are hierarchi-
cal in nature, such as the interpretive conceptual frameworks reported by Ben-Zvi 
(2004) and Noll and Shaughnessy (2012). These developmental frameworks sug-
gest that students may need to progress through particular stages of reasoning as 
they gain more experience with statistics.
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5.2.3  Summary and Preview

This section provided a brief overview of what is meant by statistical reasoning 
about data from the perspective of national curriculum documents and some statis-
tics and mathematics education organizations. This was followed by discussion of 
some early fundamental frameworks for researching student reasoning about data. 
Such research has since moved on from considering overall reasoning about data to 
a focus on reasoning about particular aspects or characteristics of data. The discus-
sion in the remaining sections focuses on research that involves reasoning about 
data through the lens of particular statistical concepts: variation, distribution, group 
comparison, and association.

5.3  Reasoning About Variation

This section considers the fundamental role of reasoning about variation, then 
focuses on frameworks developed to assist researchers and teachers to delve into 
reasoning about variation as they support learners. First, the essence of variability 
and variation are considered. Second, the breadth of contexts in which variation is 
studied is explained. Third, the initial growth of developmental hierarchies inform-
ing work on reasoning about variation is investigated. Fourth, those hierarchies 
which are SOLO-informed are synthesized. Fifth, the research into reasoning exhib-
ited by teachers and preservice teachers is examined. Finally, conceptions of varia-
tion as evidenced in reasoning are elaborated.

5.3.1  Exploring Reasoning About Variation

The notion of variation is fundamental to statistical thinking because analysis seeks 
to “explain systematic effects behind the random variability of individuals and mea-
surements” (Pfannkuch & Wild, 2004, p.  38). While some authors use the term 
variability interchangeably with the term variation (see, e.g., Peters, 2011), Reading 
and Shaughnessy (2004) explained that variability is an observable characteristic of 
an entity while variation is associated with measuring that characteristic. Research 
that informs this section has been reported using the term variability or variation as 
used by the respective researchers, even though this may not be consistent with the 
distinction made above between observable characteristic (variability) and the mea-
surement of that characteristic (variation).

The focus of this section is to examine reasoning about variation, that is, reason-
ing used to deal with situations that exhibit change, i.e., variability. Four main 
sources of variability are recognized for statistics education settings: measurement, 
natural, induced, and sampling (Franklin et  al., 2007). Measurement variability 
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occurs when repeated measurements taken on the same individual entity vary, per-
haps due to the reliability of the measuring device or due to actual changes in what 
is being measured. Natural variability occurs because individuals are inherently dif-
ferent and so measurement of the same quantity over different individuals is likely 
to vary. Induced variability occurs when other factors are introduced that change 
conditions and thus necessarily change measurement. Sampling variability occurs 
when more than one sample is drawn and the measures calculated from the samples 
vary. Being able to reason about variation, when the variability is from these diverse 
sources, provides a strong basis for statistical thinking.

The study of reasoning about variation is often informed by research into “con-
sideration of variation,” which is one of the fundamental types of statistical thinking 
identified by Pfannkuch and Wild (2004). Consideration of variation was proposed 
to have four components: (1) noticing and acknowledging variation; (2) measuring 
and modeling variation for the purpose of prediction, explanation, or control; (3) 
explaining and dealing with variation; and (4) developing investigative strategies in 
relation to variation. This list was later expanded (Reading & Shaughnessy, 2004) 
to include two more components: (5) describing variation and (6) representing vari-
ation, which are particularly important for school students in their early consider-
ation of variation.

Research into “understanding variation” has also informed research on reasoning 
about variation. After reviewing research to date, Garfield and Ben-Zvi (2005) pro-
posed a theoretical framework of seven key facets of “understanding variation.” A 
synthesis of this framework and contributions from a number of key researchers 
resulted in Reading and Reid (2010) proposing a framework of nine facets/compo-
nents of variation: (1) developing intuitive ideas of variability, (2) describing and 
representing variability, (3) using variability to make comparisons, (4) recognizing 
variability in special types of distributions, (5) identifying patterns of variability in 
fitting models, (6) using variability to predict random samples or outcomes, (7) 
considering variability as part of statistical thinking, (8) recognizing sources of 
variation, and (9) resolving expectations with observed variation. This nine-facet 
framework expands the view of understanding variation, especially in relation to 
dealing with variation in situations involving prediction, explanation, and control. 
Such depth in the framework potentially provides a better focus for teachers as they 
plan learning experiences to assist students to reason about variation.

5.3.2  Reasoning About Variation in Context

The very nature of variation necessitates the study of reasoning about variation in 
context. The context is necessary to provide meaning while reasoning (Franklin 
et al., 2007). When investigating reasoning, contexts can be naturally occurring or 
artificial (nonnaturally occurring) experiences. Artificial experiences, such as using 
chance devices, have been found to be helpful for investigating reasoning because 
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there are fewer sources of variation to consider, even though naturally occurring 
situations might motivate an understanding of variation (Watson & Kelly, 2004a).

Reasoning about variation has been studied under a variety of contexts/situa-
tions. Some studies have asked students to reason about different types of represen-
tations (e.g., graphs, tables, models; Pfannkuch, 2005) or used technology-based 
simulations (Lehrer, Kim, & Schauble, 2007). A variety of activities have also been 
used: describing distributions (Reading & Reid, 2006), comparing within and/or 
between distributions (Ben-Zvi, 2004; Makar & Confrey, 2005; Pfannkuch, 2005; 
Reid & Reading, 2008), modeling (Lehrer & Schauble, 2004), predicting outcomes 
(Mooney, Duni, VanMeenen, & Langrall, 2014; Watson, Kelly, Callingham, & 
Shaughnessy, 2003), or drawing conclusions (Peters, 2011).

There are three key contexts in which reasoning about variation has been 
researched: (1) chance, (2) data and graphs, and (3) sampling. Examples of research 
using chance contexts include investigating expectation of spinner trials (Canada, 
2006; Watson & Kelly, 2004a) and six-sided die rolls (Watson et al., 2003). Examples 
using data and graph contexts include describing weather data (Reading, 2004), 
summarizing and analyzing bird egg data (Reid & Reading, 2008), comparing 
lengths of surnames (Ben-Zvi, 2004), and comparing student grades (Makar & 
Confrey, 2005). Examples that used sampling contexts include predicting outcomes 
selecting from a candy bowl (Mooney et al., 2014; Reading & Shaughnessy, 2004), 
modeling plant growth (Lehrer & Schauble, 2004), and expressing expectation 
about student weights (Watson & Kelly, 2006). All three key contexts were used by 
Reading and Reid (2006) when they designed a questionnaire to investigate tertiary 
students’ reasoning about variation before and after an introductory statistics course 
(see Fig. 5.1). The first question was designed to determine whether the students 
knew about variability, while questions 2, 3, and 4 were designed to investigate their 
reasoning about variation in the contexts of data and graphs, chance, and sampling, 
respectively.

Much research into reasoning about variation combined several contexts to cre-
ate a richer view of the reasoning. Some researchers (e.g., Reid & Reading, 2006, 
2008) combined items from various contexts into one instrument, while others (e.g., 
Watson et al., 2003; Watson, Callingham, & Kelly, 2007) combined items from all 
three key contexts to create, by statistical analysis (Rasch modeling), one construct 
for reasoning about variation. Peters (2011) provided rich insight into students’ rea-
soning by combining contexts across three different perspectives (design, data- 
centric, and modeling) to code responses from a variety of tasks. For example, 
Peters found that insight into how teachers’ reason about controlling variation was 
better derived from small sample situations when such situations were placed in 
contexts.

A variety of studies with a focus on the role of context when students are devel-
oping their reasoning in an informal statistical inference situation, summarized in 
Makar and Ben-Zvi (2011), drew attention to the importance of context when study-
ing reasoning but one serious warning was shared. Context knowledge, which can 
influence the way students interact with data, may actually cause students to look 
beyond the data and use their context knowledge to provide explanations of patterns 
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Fig. 5.1 Questionnaire to investigate reasoning about variation (Reid & Reading, 2006, p. 2)

in or conclusions from the data. When working on group comparison tasks, middle 
school students openly admitted that data-based conclusions were not the only ones 
that could be drawn from the comparisons (Langrall, Nisbet, Mooney, & Jansem, 
2011). In fact, some research has shown that if context knowledge is applied directly 
then context may become the only resource for providing such explanations. Such a 
tendency was identified in research when students, engaged in an inquiry-based 
project, had to deal with the conflict between what they expected during their 
 investigation and what they were interpreting from the data (Makar, Bakker, & Ben-
Zvi, 2011). Despite the potential to rely too heavily on it, these researchers included 
context knowledge as one of the important elements supporting informal inferential 
reasoning.

A similarly balanced approach should be taken to the place of context when stu-
dents are reasoning about variation. While acknowledging that context is useful for 
situating such reasoning, care should be taken to encourage students to base their 
reasoning on the data provided, using their knowledge of the context to help make 
sense of their reasoning. This is in keeping with the general trend to engage students 
in tasks that involve a more complete statistical process, such as informal inferential 
(Makar & Ben-Zvi, 2011), and not just reasoning about variation in isolation. More 
use of experiences that enable modeling to understand phenomena is encouraged in 
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order to ground reasoning within the complete statistical enquiry cycle (e.g., Lehrer 
et al., 2007; Pfannkuch, 2005). In particular, the GAISE Framework (Franklin et al., 
2007) proposes that anticipating variability is critical to posing suitable questions to 
begin a statistical investigation, while acknowledging, accounting for, and allowing 
for variability become important in the later stages of an investigation.

5.3.3  Developmental Hierarchies of Reasoning

Developmental hierarchies of reasoning about the core concept of variation are 
needed to help teachers plan suitably structured learning sequences and relevant 
assessment of students’ learning about statistical investigations. Developmental 
hierarchies were initially created to describe increasing sophistication in reasoning 
about variation. There are two important examples. First, Watson et  al. (2003) 
described four levels: (1) prerequisites for variation, (2) partial recognition of varia-
tion, (3) applications of variation, and (4) critical aspects of variation. Second, Ben- 
Zvi (2004) classified reasoning into seven stages: (1) focus on irrelevant aspects, (2) 
describing variability, (3) forming a hypothesis to account for variability, (4) 
accounting for variability by comparing frequencies, (5) using measures of center 
and spread, (6) handling outlying values, and (7) distinguishing between within and 
between group variability.

Hierarchies developed by one research project cannot always be applied to 
another research project. After attempting to utilize pre-existing hierarchies, Slauson 
(2008) resorted to creating a new hierarchy in order to represent cognitive levels in 
sufficient detail. Similarly, Reid and Reading (2010) combined the Wild and 
Pfannkuch (1999) framework and the Reading and Shaughnessy (2004) Description 
Hierarchy to categorize reasoning about explained and unexplained variation, but 
needed to add an extra category (modeling and quantifying explained and unex-
plained variation) to suitably code student responses.

Increasing sophistication in such hierarchies is evident in the articulation of par-
allel aspects of developing reasoning about variation. Reading and Shaughnessy 
(2004) developed two multilevel parallel hierarchies: one for describing variation 
and the other for identifying the cause of variation. Similarly, Reid and Reading 
(2010) identified two developmental paths: one for modeling and quantifying 
explained and unexplained variation and the other for identifying and controlling 
causes of variation. More so, Peters (2011), in order to create a “robust” model for 
understanding variation, created three parallel hierarchies to represent three per-
spectives: design, data-centric, and modeling. Describing parallel aspects or per-
spectives of reasoning allows researchers to delve more deeply into interpreting 
student responses as they reason and allows teachers to plan more effective learning 
sequences to promote such reasoning.

Accurate articulation of level descriptors in developmental hierarchies is critical 
to identifying reasoning at a particular level and depends on both the quality and the 
variety of the task(s). For example, Reading and Reid (2006) initially described four 
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levels of consideration of variation (no, weak, developing, strong) separately for 
each of four tasks. After analyzing responses to two further tasks, Reid and Reading 
(2008) improved the level descriptions by clearly stating differences between the 
levels in relation to how within-group variation and between-group variation were 
incorporated into the reasoning. Weak responses dealt with one type of variation or 
the other, developing responses dealt with both types of variation but as separate 
characteristics, and it was only the strong responses that incorporated both types of 
variation and explained how they were linked. This revised hierarchy has been uti-
lized by other researchers (e.g., Mooney et al., 2014), who found that students rec-
ognized that variability should be expected but did not know how much variability 
to expect.

While the above has shown that a greater depth of hierarchical description of 
reasoning has generally been achieved when responses are given to tasks set in spe-
cific contexts, there may be other ways to further refine descriptions of reasoning. 
One effective approach is to challenge learners with cognitive conflict. Studies (e.g., 
Reading & Reid, 2007; Watson & Kelly, 2004a) reported that learners find it diffi-
cult to resolve such conflict but do share more detailed reasoning in their attempts. 
A related approach, resolving dilemmas, assisted teachers as learners to articulate 
their reasoning about variation (Peters, 2014).

As the variety of hierarchies of reasoning about variation continued to increase, 
a common basis for understanding the frameworks was needed to assist teachers as 
practitioners to more easily access the power of using the hierarchies to inform the 
planning of learning experiences and assessment of learning.

5.3.4  SOLO-Informed Hierarchies

The SOLO Taxonomy has become a popular theoretical framework for informing 
developmental hierarchies in reasoning generally and reasoning about variation in 
particular. Some researchers acknowledge that SOLO has informed their work but 
do not explain explicitly how their hierarchies relate to the SOLO framework. For 
example, Watson et al. (2003) explained that SOLO informed the starting point for 
their analysis but no specific SOLO terminology appeared in their explanation or 
hierarchy. For instance, their Level 4, critical reasoning about variation, requires a 
consolidation of concepts, and although resembling the SOLO relational level, the 
explicit connection is not explained. Further analyses by these researchers (Watson 
& Kelly, 2004a, 2006) described specific SOLO-coded levels from ikonic to rela-
tional, but these hierarchies focused on reasoning in the task itself (i.e., the context 
the variation is in) rather than specifically about variation.

One of the first researchers to provide detailed descriptions of SOLO levels for 
reasoning about variation was Reading (2004), whose depth of analysis clearly indi-
cated that some responses dealt with qualitative descriptions of variation, one cycle 
of SOLO levels (U1-M1-R1), while other responses dealt with quantitative descrip-
tions of variation, a second cycle of SOLO levels (U2-M2-R2). When more than one 
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SOLO cycle exists, it is critical that clear descriptors are provided to distinguish the 
step from one cycle to another (in the above case, the step is being able to provide a 
quantitative description of variation) as well as to distinguish one level from the 
next. A study by Watson et al. (2007) was the first large-scale study to use psycho-
metric methods (Rasch modeling) to justify the break from one SOLO level to the 
next. The detailed levels in the resulting pathway for distinguishing development of 
variation and expectation clearly showed a first cycle where expectation and varia-
tion are addressed separately, and then a second cycle where the two concepts are 
linked.

SOLO-based research has also identified critical steps in reasoning about varia-
tion within the relational level of a SOLO hierarchy. Examples are linking explained 
and unexplained variation (Reid & Reading, 2010), linking expectation and varia-
tion (Watson & Kelly, 2006), and linking proportional reasoning and variation (Reid 
& Reading, 2006). This is consistent with other research studies that have not expli-
cated hierarchies, e.g., going from seeing variation as differences to seeing variation 
as structured differences (Lehrer & Schauble, 2004), changing from nonstandard to 
standard terminology (Makar & Confrey, 2005), and moving from inventing mea-
sures to using formal statistical measures (Lehrer et al., 2007).

After critically reviewing earlier hierarchies, Peters (2011) developed a 
reasoning- focused hierarchy labeled “robust understanding of variation” that identi-
fied three perspectives on variation. The first perspective, design, “integrates 
acknowledgement and anticipation of variation in the design of quantitative stud-
ies.” The second perspective, data-centric, “integrates processes of representing, 
measuring and describing variation in exploratory data analysis.” The last perspec-
tive, modeling, “integrates reasoning to fit models to patterns of variability in data 
and statistics, judging goodness of fit, and transforming data to improve fit” (Peters, 
2011, p. 53). The three perspectives are separate in the first SOLO cycle but become 
integrated in the second SOLO cycle. This hierarchy extends earlier hierarchies that 
are based in the concrete-symbolic mode into the formal mode. Peter’s hierarchy 
provides very detailed descriptors for recognizing responses from all three perspec-
tives, focusing on the relational requirement for reasoning within each cycle.

5.3.5  Adult Reasoning About Variation

Much of the research into reasoning about variation has involved school-aged stu-
dents and first year tertiary students. Research to investigate higher levels of reason-
ing about variation may require studies that involve adults as respondents. Studies 
with adults have mostly involved teachers and have focused on observing them as 
learners in both data and chance contexts rather than investigating their understand-
ing of variation (Sanchez, Borim da Silva, & Coutinho, 2011). There have been a 
few exceptions. Peters’ (2011) in-depth research with competent mathematics/sta-
tistics teacher-leaders facilitated the refinement of levels in the SOLO formal mode. 
Later investigation of these teacher-leaders’ understanding of variation, based 
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around adult learning theories, highlighted the importance of disorienting dilemmas 
as triggers for the formation of robust conceptions of variation (Peters, 2014). Such 
experiences may be likened in value to reasoning experiences generating cognitive 
conflict when challenging learners to develop a better understanding of variation.

When investigating how teachers talked about variation while comparing distri-
butions, Makar and Confrey (2005) detailed four types of terms teachers used to 
describe variation (spread, low-middle-high, modal clump, and distribution chunks). 
Their analysis showed the linking of nonstandard to standard terms used by the 
teachers to describe variation. The results from research conducted by Canada 
(2006) with preservice teachers in a probability setting produced an evolving frame-
work that incorporated three aspects of reasoning: (1) expecting variation (describ-
ing what is expected and why), (2) displaying variation (producing, evaluating, and 
comparing graphs), and (3) interpreting variation (cause and effect). The framework 
provided a useful elaboration of the variety of conceptions of variation used by the 
preservice teachers and is consistent with, but not as detailed as, the Reading and 
Reid (2010) framework. This early work with teachers and preservice teachers sug-
gested that when these adults were first developing their reasoning, they articulated 
their ideas in similar ways to younger learners.

5.3.6  Conceptions of Variation as Evidenced in Reasoning

The hierarchies described thus far provide insight into levels of reasoning observed 
in learner responses to items and/or tasks, but the development of such reasoning 
depends on a strong foundational conception of variation. So, what does this con-
ception look like and how is this evidenced in such reasoning? After reviewing a 
decade of research on variability, Shaughnessy (2007) reported the following con-
ceptions of variation: (1) variability in particular values including extremes and 
outliers, (2) variability as change over time, (3) variability as whole range (the 
spread of all possible values), (4) variability as the likely range of a sample, (5) vari-
ability as distance or difference from a fixed point, (6) variability as the sum of 
residuals, (7) variability as covariation or association, and (8) variability as 
distribution.

Specific examples of these conceptions have been found in research studies. For 
example, when analyzing explanations of variation, Reading and Shaughnessy 
(2004) found use of both middle values and extreme values (as per (1) above). 
Lehrer and Schauble (2004) found use of the middle 50% (semi-quartile range) by 
fifth graders to describe spread (as per (3) above). Lehrer et al. (2007) found fifth 
and sixth grade children could conceptualize measures as a composition of true 
value and chance error (as per (6) above). Watson and Kelly (2004b) found evidence 
of both the point expectation view (as per (5) above) and distributed expectation 
view of variability (as per (8) above).
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The ability to reason at a certain level about variation is dependent on the matu-
rity of the conception of variation. For example, the conception (8) above, the more 
advanced ability to explain variability as distribution, would be necessary before a 
response to a task could achieve the Reading and Reid (2010) “(4) recognizing vari-
ability in special types of distributions.”

5.3.7  Reflections and Future Developments

An increasing focus on the problem-solving process in statistics education requires 
a better understanding of students’ conceptions as they reason about variation. The 
GAISE Report (Franklin et al., 2007) explained that with maturation in the problem- 
solving process comes increased complexity in the role of variation. Developmental 
hierarchies of reasoning about variation provide an in-depth view of such reasoning 
and frameworks in which teachers can position optimal teaching and assessment of 
the reasoning. Within this progression, there will always be key hurdles that stu-
dents need to achieve. For example, before being able to compare natural variation 
with induced variation (Franklin et al., 2007), students need to be able to distinguish 
between natural variation and induced variation and reason about each of them 
separately.

The nine key facets of understanding variation (Reading & Reid, 2010) provide 
a good starting point for developing a more informed view of the breadth of under-
standing needed to appreciate what may be necessary when reasoning about varia-
tion. There is an ever-increasing variety of hierarchies available to explain the detail 
of this reasoning and the more complex the situation involving variation, the more 
complex is the hierarchy needed to explain the reasoning. The context in which a 
specific task is situated is crucial to deciding which hierarchy is most relevant. If, 
however, there is no hierarchy to meet the needs of a specific context/situation, then 
adjustment of an existing hierarchy or development of a new hierarchy may be nec-
essary. The SOLO Taxonomy provides researchers and teachers with a useful tool 
to underpin understanding of increasing sophistication in reasoning about variation 
in existing and newly developed hierarchies.

Statistics education teaching continues to increase in importance and to deliver 
relevant learning teachers need to improve their statistical knowledge, especially in 
relation to reasoning about variation. Teachers engaging in professional develop-
ment activities focusing on collaboration and intellectual conversations have been 
shown to improve their understanding of variation and thus reasoning about varia-
tion (Peters, 2014). Such professional learning should be a starting point for teach-
ers. As part of their practice, teachers need to make use of developmental hierarchies 
to inform their planning of learning sequences to take learners from less formal to 
more formal articulations of reasoning. This should then naturally lead to teachers 
making use of hierarchies to inform assessment of learning outcomes. Hierarchies 
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with the SOLO Taxonomy as a theoretical basis have proven to be particularly use-
ful for teachers when assessing learning.

Although, statistics education research continues to provide more hierarchies to 
explain reasoning, the second decade of the twenty-first century has seen more of a 
focus on reasoning about distribution than reasoning about variation. Researchers 
should consider revisiting research around reasoning about variation in light of the 
new knowledge being shared by research into reasoning about other concepts. For 
example, researcher focus on reasoning from samples and about sample means, 
including relevant variability, still acknowledges dependence on foundation statisti-
cal concepts, including variation, as fundamental to more advanced reasoning when 
dealing with data (Ben-Zvi, Bakker, & Makar, 2015).

Also, researchers should consider the possibility of utilizing a pre-existing hier-
archy when relevant to the context, even though it may need to be adjusted to suit 
specific needs, as development of a new hierarchy is a time-consuming activity. 
Importantly, researchers should remember that the lack of use of formal conceptions 
and terminology of variation does not necessarily mean that the learner is not devel-
oping an appreciation of the concept. The importance of students developing the 
ability to view data from a variety of perspectives, as they work toward “data as 
aggregate” (Konold, Higgins, Russell, & Khalil, 2015, p. 318), cannot be underesti-
mated when it comes to those students being able to reason about the data and thus 
work toward their own appreciation of foundation concepts including variation.

Finally, a natural progression in reasoning about variation is through reasoning 
about distribution (Reid & Reading, 2008; Shaughnessy, 2007), and clear learning 
links between the two concepts should be nurtured.

5.4  Reasoning About Distribution

This section discusses research on student reasoning about distributions of data and 
empirical sampling distributions. Historically, research on students’ general reason-
ing about data began with attention to separate statistical concepts such as average, 
variability, samples, and graphs. Reasoning about distributions requires a research 
design and tasks that allow for a more integrated investigation of student thinking 
about multiple statistical concepts such as shape, center, and spread and their rela-
tionships to one another. The word “distribution” is used to refer to a number of 
different entities in statistics and therefore can have multiple meanings. For exam-
ple, there has been research into student reasoning about distributions of sample 
data, student reasoning about sampling distributions (empirical or theoretical), and 
student reasoning about probability distributions (both theoretical probability distri-
butions and those generated by simulations). This section begins with some per-
spectives on the concept of distribution followed by an analysis of the evolution of 
research on students’ conceptions of distributions. Based on results of student think-
ing and responses to empirical tasks, some researchers have attempted to model 
the conceptual development and growth of student thinking about distributions. 
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A discussion and comparison of some of those models and some reflections on pos-
sible next steps for researchers concludes this section.

5.4.1  Perspectives on the Concept of Distribution

Perspectives in the literature view distribution as a meta-concept that is comprised 
of a number of statistical concepts about data, the most important of which is varia-
tion (spread, range, mean-absolute deviation,2 standard deviation). Many of the 
other statistical concepts involved in distribution can be considered as general 
aspects of centers (mean, median, mode) or shape (clumped, symmetric, skewed, 
outlier, etc.). Reasoning about distributions involves integrating reasoning about 
these multiple statistical concepts.

Without variability in data, there is nothing to be distributed. In this regard, vari-
ability leads a learner to encounter the more encompassing concept of a distribution. 
According to Pfannkuch and Reading (2006, p. 4), “reasoning about distribution 
involves interpreting a complex structure that not only includes reasoning about 
features such as center, spread, density, skewness, shape, outliers but also involves 
other ideas such as sampling, population, causality and chance.” After working with 
middle school students on tasks that involved comparing several data sets, Bakker 
and Gravemeijer (2004) claimed that distribution is the central concept for thinking 
about variability. In the introductory article of a special issue of the Statistics 
Education Research Journal on research on the concept of distribution, Wild noted 
that the concept of distribution “underlies virtually all statistical ways of reasoning 
about variation (Wild, 2006, p. 11)” and called distribution the lens used to view 
variation. Wild helps to clarify the concept of distribution by defining and discuss-
ing different types of distributions. Empirical distributions are frequency distribu-
tions where variability can be noticed directly in the data. Theoretical distributions 
are models that generate variation that is similar to what may be noticed in empirical 
distributions. Students are usually first introduced to reasoning about sample distri-
butions of data that involve unit-to-unit variability, then to population distributions, 
and finally to sampling distributions that involve study-to-study variability (Wild, 
2006).

The concept of distribution is so central to all of statistical thinking and reason-
ing that it is quite understandable how it has become a major focus of recent research 
in statistics education. Among the questions of interest to researchers are how and 
when do students begin to integrate the concepts of center, shape, and spread and to 
acknowledge that these are aspects of distributions? Is there a developmental 
sequence as students grow in their conceptions of distribution, and if so, what are 
some possible suggestions for teaching students and providing tasks about distribu-
tions that enable them to build on their conceptions over time? More recently the 

2 Mean absolute deviation, or MAD, is the (sum of the distances of all values from the mean )÷ 
(number of values). In analysis and measure theory, it is the L1 norm.
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issue of the teaching inference via simulations and sampling distributions has arisen 
and is being debated in the statistics education community. Following the develop-
ment of teaching tools and recommendations about approaches to inference such as 
those found in Rossman and Chance (2014), there has been research into the effi-
cacy of teaching inference using simulation-based approaches and sampling distri-
butions (see, e.g., Lane, 2015; Taylor & Doehler, 2015).

5.4.2  Evolution of Research on Student Reasoning 
About Distribution

Research on student reasoning about distributions emerged from research on stu-
dent reasoning about other statistical concepts such as centers, variability, samples, 
and graphs. (Research on student reasoning about centers and averages is discussed 
in Chap. 4 of this book; research on students’ conceptions of variability is presented 
in the previous section of this chapter.) Previous research on centers and variability 
has helped to inform subsequent research on students’ conceptions of distributions 
and has influenced the types of tasks used and types of research questions that have 
been explored around distributions. For example, a common theme that has emerged 
across research studies on student reasoning about average is that students’ concep-
tions of average develop over a long time and that there appears to be a natural 
progression in student reasoning about averages from mosts, to middles, to the use 
of the mean as typical or as a fair share, to a representative for an entire data set 
(e.g., Konold & Pollatsek, 2002; Mokros & Russell, 1995; Watson & Moritz, 2000). 
Similarly, developmental hierarchies describing a progression for the variability 
concept were discussed above in Sect. 5.3 (Reading, 2004; Watson et  al., 2007; 
Watson & Kelly, 2006), and a trajectory of conceptions of variability was summa-
rized (Shaughnessy, 2007).

The research on student thinking on centers and variability revealed a tension 
for students between centers and variability when responding to tasks involving 
comparing data sets or sampling tasks. This tension was the first sign that there 
would be an added dimension of complexity for students as they attempt to inte-
grate multiple statistical concepts in their development in reasoning about distribu-
tions. For example, when pulling repeated samples from a mixture of colored 
objects where they were given the population proportions of each color, some stu-
dents tend to predict samples identical to or very close to the population propor-
tions, while other students acknowledge there could be some, even considerable, 
variation in the sample proportions of the colors. Such tension between representa-
tiveness and variability has been documented by many researchers (Noll, 2011; 
Noll & Shaughnessy, 2012; Rubin, Bruce, & Tenney, 1991; Watson et al., 2007). 
Furthermore, a robust developmental hierarchy in students’ integration of the con-
cepts of expectation and variation has consistently been found (Saldanha & 
Thompson, 2003; Shaughnessy et al., 2004; Watson et al., 2007). Some students 
focus only on centers and expectations, while others focus only on variability in 
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responses to sampling tasks. Still other students identify potential influences of 
both center and spread on samples, while a few students are not only able to recog-
nize both expectation and variability but also to integrate the two concepts when 
reasoning about data that is gathered from repeated samples. Studies such as those 
by Saldanha and Thompson (2003), Reading and Reid (2006), Watson et al. (2007), 
Watson (2009), and Noll and Shaughnessy (2012) have provided evidence of what 
has come to be called distributional reasoning in the literature, the ability to iden-
tify and connect multiple aspects of distributions when reasoning about data 
(Shaughnessy, 2007).

Among the first researchers to take a distributional approach to student reasoning 
about data were Bakker and Gravemeijer (2004) who investigated seventh grade 
students’ attention to center, spread, and shape when comparing distributions of 
data. Students tended to reason from particular data points and then move to modal 
clumps of data (Konold et al., 2002), referring to low clumps, average clumps, and 
high clumps in the graphs. Aspects of center, shape, and spread are evident in this 
type of student reasoning since the clumps (centers) are spread out across the distri-
bution, creating a whole shape for the distribution of data. Friel, O’Connor, and 
Mamer (2006) also found that elementary students were likely to first focus on 
particular values such as the mode and to identify clumps of data when comparing 
data sets. Watson (2009) shared similar evidence of students referring to clumps. 
Konold et al. (2015) discussed four different perspectives on data: data as pointer, 
data as case value, data as classifier, and data as aggregate.

Subsequent researchers have used sampling tasks that attempt to provide oppor-
tunities for students to demonstrate that they are capable of distributional reasoning 
and to document how students respond to tasks that have opportunities to attend to 
multiple aspects of distributions, including shape, center, and variability. Some 
studies have asked students to draw repeated samples, either from a known or an 
unknown population. When students know the original population proportions, they 
are asked to use that information to predict what an empirical sampling distribution 
would look like for a statistic from the repeated samples (Shaughnessy et al., 2004; 
Watson & Kelly, 2006). In the case where the parent population is unknown, stu-
dents are asked to use the information from the samples to predict the makeup of the 
original population. For example, Noll and Shaughnessy (2012) presented students 
with four empirical sampling distributions that had all been generated from the 
same binomial parent population (see Fig. 5.2). In this mystery mixture task, middle 
and secondary students (N = 236) were asked what they thought the original bino-
mial proportions were in the parent population and how they made their decision.

The researchers wondered whether students would attend to variation both within 
and between the sampling distributions. Would they rely on visual modal clumps as 
centers or calculate medians or means? Would they incorporate both centers and 
spreads in their analysis to make estimates for the true proportion in the mixture? 
Results indicated that while students used a number of these possible strategies to 
make estimates for the mystery mixture, over 40% of them relied on “mosts,” or 
modal clumps which tended to make them underestimate the true proportion of reds 
in the mixture (Noll & Shaughnessy, 2012). However, there were also many  students 
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Fig. 5.2 The mystery mixture task

who articulated the variation evident among the sampling distributions and even 
some who calculated means to get information beyond the visual impact informa-
tion in the graphs.

Bakker and Gravemeijer (2004) note that it is desirable for students to reason 
about aspects of distributions from both an upward perspective (from data to distri-
bution) and from a downward perspective (from distribution to data, such as from a 
probability distribution to sample data). They recommend delaying the introduction 
of the mean with students, suggesting that a better approach is to build on the stu-
dents’ reasoning about modal clumps. Makar and Confrey (2005) claimed that “…
there are more than just the two perspectives of distribution that are usually dis-
cussed in the literature: the single points and aggregate perspectives. This third per-
spective,  …  —partial distributions or “mini-aggregates”—deserves some further 
research to investigate the strength of its link to statistical thinking about distribu-
tions” (p.  48). The results of Noll and Shaughnessy (2012) found that although 
many students reasoned from such mini-aggregates, there were also more sophisti-
cated responses that could be classified as reasoning from proportions or reasoning 
distributionally. Thus, the research on student reasoning about distributions has sug-
gested that there may be a developmental-conceptual trajectory in student reasoning 
about distributions, similar to the trajectories that have been found when students 
reason about centers or variability.
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5.4.3  Conceptual Models of Student Reasoning 
About Distribution

This section discusses four examples of models that describe trajectories of student 
reasoning about distributions. In part these models could be considered develop-
mental, because as students mature their reasoning about data can include more 
abstract concepts such as measures of center and measures of variability that are not 
yet accessible to younger students. However, there is also a teaching-learning com-
ponent to reasoning about distributions, because concepts such as mean, median, 
interquartile range, and standard deviation do not just emerge developmentally; they 
are taught. Thus, it may be more accurate to refer to these models as conceptual 
models that describe progressions of student reasoning that have emerged from 
research on student thinking about distributions and aspects of distributions (center, 
shape, and variability).

Ben-Zvi (2004) investigated students’ reasoning about variability as they com-
pared data sets. Ben-Zvi found that the students’ progression of reasoning began 
with attention to variability, but progressed in the later stages to a consideration of 
multiple aspects of the data sets, including integrating measures of center and 
spread, and eventually to a concern about shape, and outliers in the data. Ben-Zvi 
noted that the “development of reasoning about variability in comparing the groups 
was accompanied by somewhat parallel development of global perception of a dis-
tribution as an entity that has typical characteristics such as shape, center, and 
spread” (p. 57).

Work to build a SOLO Taxonomy of tertiary students’ reasoning about distribu-
tion was initiated by Reading and Reid (2006). Student tasks included comparing 
data sets, reasoning about samples pulled from a mixture of known proportion, a 
task on the behavior of the sampling distribution of means, and a task on comparing 
distributions. In their analysis Reading and Reid identified two U-M-R learning 
cycles. The first cycle focused on aspects of distribution (center, variability, shape), 
while the second cycle included attention to inference. In the first cycle, responses 
that made connections between several concepts (e.g., center and spread) were 
coded as relational (R1), indicating the beginning of distributional reasoning. In the 
second learning cycle, the researchers looked for connections between inferential 
statements and aspects of the distribution of data. Reading and Reid claimed that 
students’ distributional reasoning depended heavily on the strength of their under-
standing of variation. They concluded that an understanding of variation may be a 
necessary condition for students to attain a deep understanding of distribution.

An investigation of Grade 3–9 students’ reasoning about expectation and varia-
tion and students’ integration of these two aspects of distributions was conducted by 
Watson et al. (2007). Student tasks included making predictions for repeated sam-
ples of lollies (candies) drawn from a known mixture, a two-spinner game, data 
from daily temperatures of the weather, and the comparison of pairs of distributions 
of student grades using both same-sized and different-sized samples. The study 
focused on links students made between expectation and variation and how the 
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 integration of the two concepts develops across grade levels. Watson et al. (2007) 
identified six levels of reasoning. The first two levels indicate either no or very 
primitive acknowledgment of expectation or variation. The top four levels suggest 
there is a developmental-conceptual progression in student reasoning about both 
expectation (“more” → centers in context → proportion → distribution with strong 
connections to variation) and variation (anything can happen → random variation → 
unexpected variation). Watson et al. (2007) identified a third developmental-con-
ceptual progression of gradually stronger acknowledgment by students of the statis-
tical links between expectation and variation. They recommended that tasks such as 
the ones they used in their study should be given to students since they provide 
opportunities for students to encounter and reason simultaneously about expecta-
tion and variation.

Noll and Shaughnessy (2012) researched Grade 6–12 students’ understanding of 
empirical sampling distributions before and after a teaching episode in which stu-
dents had opportunities to predict the results of repeated samples. Their tasks 
included repeated sampling from both known mixtures (prediction tasks) and 
unknown mixtures (the mystery mixture task) to estimate unknown population pro-
portions. Students were asked to explain the reasoning for their predictions. 
Responses indicated that their reasoning was based on the shapes, centers, and/or 
variability that students expected in samples from the known distribution. Noll and 
Shaughnessy proposed a developmental-conceptual progression of student reason-
ing about sampling distributions that includes:

Level 1 Additive reasoning—using only frequencies to make predictions
Level 2 Transitional reasoning—attention to a single aspect of distribution such as 

shape, weak centers (modes or modal clumps), or spread
Level 3 Proportional reasoning—reasoning using means, medians, relative fre-

quencies, or probability to make predictions
Level 4 Distributional reasoning—acknowledging and integrating multiple aspects 

of sampling distributions, shape, centers, and variability, when making predic-
tions about sampling distributions (see Fig. 5.3)

All four of these models of conceptual development around reasoning about dis-
tributions identify similar conceptual trajectories that begin with reasoning from 
frequencies, particular data points, or modal clumps, then to relying on multiple 
aspects of distributions, such as center and spread, and eventually to integrating 
multiple aspects while reasoning about distributions. Reading and Reid (2006) call 
this final stage “relational thinking” in their SOLO model interpretation of student 
reasoning. Noll and Shaughnessy (2012) referred to it as distributional reasoning. 
Ben-Zvi (2004) called it “a global perception of a distribution” with characteristics 
such as centers, shape, and spread. Though there are some differences in the lan-
guage used, researchers on student reasoning about distribution appear to be in gen-
eral agreement that there is a progression of reasoning about distributions among 
school-age students similar to the progression from “mosts” to centers to propor-
tions to distributions identified by Watson et al. (2007) and corroborated in the con-
ceptual reasoning lattice of Noll and Shaughnessy (Fig. 5.3).
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In addition to the research studies of elementary, middle, and secondary stu-
dents’ reasoning about distributions and their aspects, there have also been studies 
on how tertiary students reason about distributions. The researchers used tasks simi-
lar to or even identical to those used with school-age students. Prospective elemen-
tary teachers’ reasoning about variability and distributions was investigated by 
Canada (2006). Reasoning about distributions by introductory undergraduate statis-
tics students has been investigated by Ciancetta (2007) and that of graduate mathe-
matics students by Noll (2011). It is interesting to note that that the tendency found 
among upper secondary students to rely on proportions, centers, or probabilities to 
predict outcomes for repeated samples persists among tertiary students. Students 
tend to neglect variability in their analysis of and predictions about data. The studies 
by Canada (2006), Ciancetta (2007), and Noll (2011) provide further evidence for 
the conceptual trajectory of student reasoning about distributions that begins with 
students focusing on frequencies and then moving to making predictions based on 
proportions and relative frequencies and eventually to integrating various aspects of 
distributions, such as including both expectation and variability in their reasoning.

5.4.4  Reflections and Future Developments

Research on student reasoning about data started with studies of student reasoning 
about centers, moved to a focus on reasoning about variability in data, and eventu-
ally moved to investigations of student reasoning about distributions. Thus, the his-
tory of the research on student reasoning about data sets and sampling has come 

Fig. 5.3 Conceptual lattice of student reasoning about sampling distributions
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from looking at how students reason about particular aspects (center, spread) and 
then only later to global entities like distributions. Most of the research studies on 
student reasoning about distribution thus far have been exploratory studies, primar-
ily descriptive in nature. However, the results of these descriptive studies have been 
consistent in their findings about how students reason about aspects of distributions 
(discussed in the previous subsection above). Models of student reasoning about 
distributions suggest that there may be transitions through which students must pass 
in their reasoning in order to fully comprehend the concept of a distribution as an 
entity. For example, proportional reasoning is a necessary condition prior to distri-
butional reasoning. Students need to make predictions, interpretations, and infer-
ences from distributions based on relative frequencies, rather than just from 
frequencies. Furthermore, a solid acknowledgment and understanding of variability 
around a center of a distribution is a critical piece of distributional reasoning.

The current state of research on distributions suggests several areas of needed 
research for the future. Based on the spadework provided by these descriptive stud-
ies, it may be an ideal time for statistics education researchers to begin to incorpo-
rate statistical tasks that target the hypothesized reasoning transitions about 
distributions into their teaching, to build teaching-learning trajectories for the class-
room and test them. In this regard, the field is in need of curriculum design experi-
ments (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) that can facilitate the 
development of student learning about distributions while simultaneously testing 
the validity of the proposed conceptual-developmental models. For example, it 
would be interesting to investigate the growth and changes in student reasoning 
about data that could occur if the teaching approaches recommended by Watson 
et al. (2007) and implemented for a short time by Noll and Shaughnessy (2012) 
were actually implemented throughout an entire introductory course in statistics.

Another area for future research is to conduct experimental studies that test 
novel teaching approaches to reasoning about data and distributions. The field may 
now have sufficient information from descriptive studies to conduct true experi-
mental studies. In particular, the research on student reasoning about distributions 
has led to a growing interest among researchers in investigating students’ informal 
inference, including inference based upon simulations of sampling distributions. 
Recent studies by Taylor and Doehler (2015) and Lane (2015) suggest the potential 
benefits of teaching inference using empirically generated sampling distributions. 
On the other hand, concerns have arisen about the advisability of incorporating 
inference from sampling distributions into introductory statistics courses (Watkins, 
Bargagliotti, & Franklin, 2014). It is high time that statistics education research 
conducted some experimental studies to test and compare various approaches to 
teaching inference in statistics classes. In particular, there is need for studies that 
compare the impact on students’ statistical reasoning of informal inference 
approaches with that of traditional approaches to inference. The field is in need of 
both design experiments and true experimental studies to push beyond what is 
already known from the descriptive studies about students’ reasoning about distri-
butions. In any case, the growing interest in teaching reasoning from sampling 
distributions is likely to rekindle further research into student’s understanding of 
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distribution in general and hopefully will continue to build upon the prior research 
discussed in this section.

5.5  Reasoning About Comparing Groups

Previous sections of this chapter have elaborated on student reasoning about data 
(Sect. 5.2), student reasoning about variability and variation (Sect. 5.3), and student 
reasoning about distributions (Sect. 5.4). Comparing groups includes all of these 
aspects. Many statistical questions, hypotheses, and investigations in data are related 
to differences and similarities between groups. This may be one reason why Konold 
and Higgins (2003) see comparing groups as “the heart of statistics” (p.  206). 
Comparing distributions is fundamental in statistics since it includes many of the 
key ideas (Burrill & Biehler, 2011) like data, variation, and distribution, and it could 
therefore be considered as the most important activity in statistics education. Such 
activities can be done at different age levels ranging from learners at early stages 
(e.g., Watson & Moritz, 1999) to secondary school students (e.g., Pfannkuch, 2007) 
to pre- and in-service teachers (e.g., Makar & Confrey, 2002). Digital tools can play 
a fundamental role in group comparisons since they enable learners to easily change 
between different displays and summary statistics for getting a deeper insight into 
the data.

This section outlines a distinction between different facets of comparing groups 
and provides an outline of research about comparing groups across all age levels 
and about the use of digital tools when comparing groups. Finally this section offers 
some ideas for future developments.

5.5.1  Making Group Comparisons

When comparing groups at least two variables are taken into account. Three types 
of questions can be distinguished leading to three kinds of comparisons involving 
two variables (Konold, Pollatsek, Well, & Gagnon, 1997). The first kind of question,3 
for example, “Are males or females more likely to have a driver’s license?” (Konold 
et al., 1997, p. 7), asks about the association between two categorical variables. A 
“group comparison” involves one numeric and one categorical variable, such as the 
question “Do those with a curfew tend to study more hours than those without a 
curfew?” (Konold et  al., 1997, p. 7). The third kind of comparison involves two 
numeric variables, such as a question like “Is there a relation between hours spent 
watching TV and school grades?” (Konold et al., 1997, p. 7). This section considers 
the second kind of question, group comparisons. Reasoning about the association of 

3 For a more comprehensive categorization of statistical questions, see Biehler (2001, p. 98) and 
also Arnold (2013).
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two categorical (first case of Konold et al., 1997) and two numerical variables (third 
case of Konold et al., 1997) are covered in Sect. 5.6 of this chapter.

The research tasks that have been used in studies that examine how students 
make group comparisons vary along several dimensions. One of these dimensions 
is the task setting. Four general types of task setting can be identified:

 1. Whether or not the groups are of equal sample size
 2. Whether or not the sample sizes are small or large
 3. Whether or not the task requires the use of software to manipulate displays and 

calculate summaries to make comparisons
 4. Whether the data set in which the group comparison takes place is a sample of a 

population or the population itself

Teachers and researchers have to be aware of these specific settings when design-
ing tasks for group comparisons or when evaluating learners’ outcomes when com-
paring groups, since each type of task setting may evoke and need different strategies 
for learners to compare the groups. A second dimension distinguishes between the 
following types of questions:

• Decision questions (e.g., “Which group is “better?”)
• Descriptive and exploratory questions (e.g., “What differences and commonali-

ties can be found?”)
• Hypothesis-driven questions (e.g., “Do girls tend to read longer than boys?”)

A third dimension includes the elements of distributions (called group compari-
son elements) that students can take into account when comparing groups. Features 
of distributions can be center, spread, skewness, peaks and clusters, and outliers 
(Rossman & Chance, 2001; Zieffler, Harring, & Long, 2011), which can also be 
seen as fundamental elements for describing a distribution. However, at least two 
additional elements can be compared across distributions. Based on observations of 
children when working on group comparisons, Biehler (2001, 2007a) suggested 
making a distinction between so-called proportion (p-based) and quantile (q-based) 
comparisons. Boxplots, for example, invite learners to compare distributions 
quartile- wise, such as comparing the medians or the lower quartiles. In p-based 
comparisons a specific cut point can be chosen (e.g., 10 h) and the proportion of 
cases that are equal to or larger than 10 h is compared in both groups (see Biehler, 
2001). The use of these group comparison elements may point to different views on 
data when comparing groups in the sense of “local view” (e.g., view on local data 
points), “global view” (e.g., view on global characteristics of a distribution like 
center, etc.), and an intermediate step (e.g., view on clumps, bumps, hills, etc.) 
between both of them. Observations of children show they often pick out just an 
interval such as “between 2 and 3 h” and compare frequencies, which would be 
classified as a local view. P-based and q-based comparisons constitute a global view 
on the data and are valid comparisons from a statistical standpoint. In conclusion 
center, spread, shift, skewness, p-based comparisons, and q-based comparisons can 
be viewed as sustainable elements for comparing groups.
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Taking into account the center and spread of distributions, boxplots are powerful 
displays and offer many advantages, especially when comparing more than two 
groups, but students also find them difficult to understand and interpret (see Bakker, 
Biehler, & Konold, 2005; Lem et  al., 2014; Lem, Onghena, Verschaffel, & Van 
Dooren, 2013). There are other studies (e.g., Bakker & Gravemeijer, 2004; Konold 
et al., 2002) that have looked at students making group comparisons by identifying 
modal clumps in the distributions and comparing distributions via modal clumps. 
Modal clumps can be viewed as an adequate preliminary stage, in particular for 
young learners, to identify the location and spread of a distribution and to compare 
distributions by identifying a shift between two modal clumps.

A problem arises: a standardized language has not been developed for doing such 
comparisons in descriptive statistics, whereas in inferential statistics specific tests 
and models can be specified for comparisons such as that one distribution is just a 
linear shift of the other which means the distributions are identical except with 
regard to a measure of center. So, group comparisons can turn out to be a challeng-
ing activity for learners, especially when they are embedded in complex data sets 
with many variables, several displays, or several summary statistics. Imagine that a 
learner has produced boxplots, histograms, and numerical summary tables of two 
distributions and that (s)he may be able to further manipulate diagrams with a digi-
tal tool. This opens many new options for very complex comparisons across dia-
grams and groups. Learners may apply what Wild and Pfannkuch (1999) called 
transnumeration (an ability to change displays to find patterns in the data). In the 
case of a multivariate data set with many variables, a group comparison may also 
point to the relevance of additional variables that were not originally considered in 
the group comparison. For research on students dealing with group comparisons in 
the context of projects with multivariate data, see Biehler (2005).

5.5.2  Research on Group Comparisons with Students

Research on the group comparisons made by students has focused on one of three 
main goals:

• Categorizing the quality and level of students’ comparisons
• Identifying pitfalls and difficulties students have with group comparisons
• Identifying intuitive strategies and which strategies are productive for future 

learning

Unfortunately, the research studies are only partly connected and related to each 
other so that one cannot speak of a cumulatively growing body of knowledge and 
theory. In our review, we do not include studies for group comparisons in the con-
text of teaching and learning formal inference, but see Hogan, Zaboski, and Perry 
(2015) for an interesting study on this topic.

An early study on comparing groups was done by Watson and Moritz (1999), 
who used the interview protocol of Gal, Rothschild, and Wagner (1989) to observe 
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Australian Grade 4–8 students when comparing two distributions in different set-
tings. Students were given two distributions of test scores for two school classes in 
the form of stacked dot plots. A total of four group comparison situations were 
given. The student’s task was to decide “Which class is better?” (Watson & Moritz, 
1999, p. 151).

A description of the four sets of two distributions provided for the four group 
comparison situations (see Fig. 5.4) follows:

• Part (a): Equal-sized samples; all scores of one distribution are larger than the 
scores of the other distribution.

• Part (b): Equal-sized samples; most scores of one distribution are larger than the 
scores of the other distribution.

• Part (c): Equal-sized samples; both distributions symmetric and with the same 
center; one distribution with larger spread than the other.

• Part (d): Unequal sample sizes; both distributions have the same range; the larger 
sample has a symmetric distribution; the distribution of the smaller sample has 
negative skewness, higher mean, and slightly larger standard deviation.

Fig. 5.4 Group comparison tasks similar to Watson and Moritz (1999, p. 151)—see also Watson 
and Shaughnessy (2004)
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While a total score strategy (adding up all scores in both classes and comparing 
the sums) could be helpful to make decisions in Parts (a) and (b), it would not work 
for Parts (c) and (d) to decide which class is better. The responses of students were 
transcribed and coded based on the levels unistructural, multistructural, and rela-
tional of the SOLO Taxonomy of Biggs and Collis (1982). Strategies used by stu-
dents when working on Parts (a)–(c) ranged from comparing individual values of 
the distributions to calculating the total of test scores, whereas calculating the mean 
of the scores of both classes was used when working on Part (d). One major result 
of the study was that students in higher grades tended to use strategies based on 
proportional reasoning compared to students in lower grades and that “students 
used numerical and visual strategies, either individually, or in conjunction with each 
other, to make comparisons between the data sets presented in graphs” (Watson & 
Moritz, 1999, p. 163).

While Watson and Moritz (1999) focused on young students without much 
preknowledge on comparing groups using numerical and visual strategies for 
comparing groups, Pfannkuch, Budgett, Parsonage, and Horring (2004) observed 
15-year-old students when comparing distributions shown by boxplots with the 
temperatures of Wellington and Napier. According to Pfannkuch et  al. (2004, 
p. 3), the

students were required to pose a question (e.g., Which city has the higher maximum tem-
peratures in summer?), analyze the data (given in the form of a table), draw a conclusion, 
justify the conclusion with three supporting statements and evaluate the statistical process. 
All students analyzed the data by calculating the five summary statistics with many using 
back-to-back stem-and-leaf plots for these calculations and then drawing boxplots by hand.

The researchers organized student responses into one of five categories: conclu-
sion, comparing equivalent summary statistics,4 comparing nonequivalent sum-
mary statistics, comparing variability, and comparing distributions. Conclusion 
responses were very general statements that made a group comparison, like “Napier 
has the highest temperature.” Comparing variability responses took into account the 
comparison of variability of the two groups. Finally, comparing distribution 
responses included the comparison of distributions with regard to shift (see Biehler, 
2004). The authors also assigned SOLO levels to the responses. There were no 
responses coded at the relational SOLO level and only a few at the multistructural 
level when comparing the boxplots via comparing variability or comparing distri-
butions. This implies that the participants preferred to compare the boxplots via 
summary statistics (27 of 30 participants used summary statistics), but had difficul-
ties using variability or shift.

Refining the framework of Pfannkuch et al. (2004), Pfannkuch (2007) asked Year 
10 students to make three comparison statements to explain differences and simi-
larities between the distributions of the variable “number of text messages sent in 
the last month” for customers from two phone companies (see Fig. 5.5).

4 Summary statistics refer to measures of central tendency in this case.
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The categories of Pfannkuch et al. (2004) were refined in Pfannkuch (2007) to 
take into account students’ responses on two different aspects. The first aspect iden-
tified concepts students used to compare distributions represented by boxplots, such 
as summary (e.g., comparison of medians), spread (e.g., comparison of range), shift 
(e.g., comparison of shift between both distributions), and signal (e.g., comparison 
of position and shift of the middle 50%), which can also be adapted for comparing 
distributions in other settings and with other displays. The second aspect rated the 
quality of the comparison on a four-point scale. A summary of the different level 
and group comparison elements given in Pfannkuch (2007) is reproduced in 
Table 5.1. A main conclusion was that the participants preferred to refer to summary 
and spread elements in contrast to shift and signal elements, and they tended to stay 
in the describing and decoding levels without interpreting their findings, seldom 
reaching the assessor level.

More recent studies on students’ reasoning about comparing groups can be found 
in Langrall et al. (2011), Reaburn (2012), and Schnell and Büscher (2015).

For instance, the study of Langrall et al. (2011) focused on the role of students’ 
context expertise when comparing distributions. Langrall et al. (2011) conducted a 
qualitative study and asked middle school students to analyze and compare authen-
tic data, which was related to selected students’ areas of interest (e.g., soccer, music, 
etc.). The authors found “that students used context knowledge to (a) bring new 
insight or additional information to the task, (b) explain the data, (c) provide justifi-
cation or qualification for claims, (d) identify useful data for the task at hand, and 
(e) state facts that may enhance the picture of the data but are irrelevant to the pro-
cess of analyzing the data” (Langrall et al., 2011, p. 47). Strategies of beginning 
university students when comparing two data sets have been investigated by Reaburn 
(2012). In this qualitative study, Reaburn (2012) asks the participants to state which 
group performed better (and why) in four different settings (Reaburn has used the 
tasks of Watson & Moritz, 1999, p. 151). Main results of the study were that the 
university students showed similar problems when comparing groups as younger 
students do (no use of measures of center, no proportional reasoning when appropri-
ate). Schnell and Büscher (2015) analyzed individual concepts of students compar-

Fig. 5.5 Boxplot comparison task (copied) similar to Pfannkuch (2007, p. 157)
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ing distributions. The major goal of their research was to explore how German 
middle school students (ages 13–15) without specific preknowledge made compari-
sons of frequency distributions represented as stacked dot plots. The students’ task 
was to compare the distributions of temperature readings taken at the top of the 
highest German mountain, Zugspitze, during July in 2002, 2004, and 2007. The 
individual concepts when comparing groups were reconstructed with the help of 
using an adaption of the framework of Vergnaud’s (1996) theory of conceptual 
fields. This framework was applied to identify several concepts that students used 
for comparing the distributions. Schnell and Büscher (2015) observed that students 
used visual features, such as modal clumps, to organize the data and that the stu-
dents primarily focused on absolute frequencies instead of the relationship of cor-
responding features between the distributions.

5.5.3  Research on Group Comparisons with Digital Tools

The focus in Sect. 5.5.2 has been on group comparison strategies of learners where 
given displays of distributions like stacked dot plots were provided (e.g., Watson & 
Moritz, 1999) or boxplots (e.g., Pfannkuch, 2007). We now focus on research on the 

Table 5.1 Description of levels for student reasoning about comparing distributions by means of 
boxplots (Pfannkuch, 2007, p. 159)

Elements 
of 
reasoning

Point 
decodera

Shape comparison 
describer

Shape comparison 
decoder

Shape comparison 
assessor

Level 0 Level 1 Level 2 Level 3

Summary Identifies 
the 
5-number 
summary

Compares two or 
more 
corresponding 
5-number summary 
points including 
median

Compares medians 
only. Compares 
non-corresponding 
5-number summary 
points but does not 
interpret

Compares non- 
corresponding 
5-number summary 
points and interprets

Spread Compares spreads 
of visual shapes 
(lengths, spaces, in 
boxes) but does not 
decode

Compares and talks 
about spread, refers 
to range, compares 
local 
regions/densities

Compares and refers 
to the type of spread/
densities locally and 
globally (e.g., even, 
clustered)

Shift Compares and 
refers to the shift 
qualitatively for the 
whole shape

Compares and 
refers to the type of 
shift (e.g., 
nonuniform)

Compares and refers 
to the shift of the 
majority

Signal Compares the 
middle groups’ 
visual shapes 
(boxes) in relation 
to each other but 
does not decode

Compares the 
middle groups and 
decodes by 
referring to the data

Compares the overlap 
of the data of middle 
groups

aThe point decoder does not exist for spread, shift, and signal
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use of digital tools when comparing groups (with preservice teachers and in-service 
teachers). Makar and Confrey (2002, 2004) and Makar (2004) reported observa-
tions from a professional development course where preservice teachers compared 
two groups using Fathom (Finzer, 2007). The preservice teachers were given dot 
plots of test scores from two different schools. In contrast to studies mentioned in 
the previous section, this task contained a sample/population setting where preser-
vice teachers were given the data set in Fathom and were required to manipulate the 
data displays to decide whether the groups are different (Makar & Confrey, 2004). 
More precisely they were “asked to use Fathom to compare the performance of 
males and females in the school” (Makar & Confrey, 2004, p.  360). A five-tier 
framework was developed to categorize the teachers’ reasoning when comparing 
two groups: pre-descriptive, descriptive, emerging distributional, transitional, and 
emerging statistical level. Reasoning at the pre-descriptive level was based on indi-
vidual data points or anecdotal evidence. Emerging distributional reasoning con-
sisted of a holistic view that used qualitative descriptors and summary statistics to 
describe two data sets. At the most developed level of reasoning, emerging statisti-
cal, the teachers began to consider the differences between measures of center in 
light of variability and to take sample sizes into account. In summary, the taxonomy 
of Makar and Confrey (2002) primarily had a focus on possible inferences learners 
can make when comparing groups with regard to variability between both data sets 
and statistical terms like “evidence” and “significance.” Madden (2008) used the 
Makar and Confrey (2002) framework to examine preservice teachers’ reasoning 
when comparing groups to show an improvement of teachers’ skills in comparing 
groups after a professional development course. In a follow-up study of Makar and 
Confrey (2002), Makar and Confrey (2004) reported on a video interview of four 
pairs of preservice teachers after their participation in a professional development 
course in statistics. The preservice teachers were asked to use Fathom to work with 
a data set of test scores to decide whether the distributions were different for boys 
and girls. Makar and Confrey (2004) found that the teachers were comfortable using 
traditional descriptive statistical measures to conduct informal comparisons, 
although the teachers struggled to interpret the difference between variation within 
distributions and variation between groups.

We are now going to examine studies that focus closely on the influence of soft-
ware on comparing groups and how preservice teachers use software when compar-
ing groups. Based on studies with school children, Biehler (1997) conceptualized 
four phases when learners solve statistical problems with software: formulating the 
context problem as a statistical problem, transforming the statistical problem as a 
task for the software, using the software, and interpretation of software results in 
terms of statistics. The research report pointed out that quite a few students directly 
jump from a real problem to a task for the software without a careful consideration 
whether the problem changes during this process. Moreover quite a few students are 
satisfied with producing computer results that are neither interpreted in statistical 
nor subject matter terms (Biehler, 1997). One may conclude, when digital tools are 
used, comparing groups becomes an even more challenging activity, since there are 
many ways to use digital tools in group comparison processes. In this respect, 
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Makar and Confrey (2014) established a typology for learners when doing a data 
analysis task with digital tools, in this case Fathom. The authors distinguished 
between three different approaches: wondering, wandering, and unwavering. 
According to Makar and Confrey, wonderers look on the data with a certain theory 
in their mind and can be characterized as goal-oriented, seeking “evidence to sup-
port, refine, and extend their theories” (p. 356). In contrast, wanderers “have no 
particular evidence in mind when going into the data” (p. 357). Wanderers explore 
the data to see if anything “popped out” at them. Unwaverers can be identified “by 
the decision pathway used: investigators looked for a particular piece of evidence to 
support or refute their original conjecture, and once they found it they were satisfied 
that they had answered the question put to them.” (p. 357).

TinkerPlots (Konold & Miller, 2011) can also be seen as an adequate tool not 
only for primary but also for secondary students and for teacher education to 
enhance the quality of group comparisons, switching easily between several dis-
plays. In this regard Frischemeier (2017) designed, conducted, and evaluated a one- 
semester- long course for preservice teachers on data analysis with TinkerPlots via a 
design-based research approach (Cobb et al., 2003). One major aim of the course 
was to teach preservice teachers how to compare groups using TinkerPlots. Building 
on the findings of Biehler (1997), Frischemeier conducted a video study with the 
participants after the course (Frischemeier, 2014, 2017; Frischemeier & Biehler, 
2016). The preservice teachers were given real data about the monthly income 
structure of German employees and were asked to compare the distributions of 
income of men and women in Germany using TinkerPlots. This was called the 
“VSE task” (see Fig. 5.6).

Communication and activities with TinkerPlots were analyzed. On this basis, 
Frischemeier (2014) identified and verified findings that Biehler (1997) reported for 
students working on group comparisons with TinkerPlots. The teachers’ transcribed 
communications in their group comparison process were analyzed (Frischemeier, 
2017; Frischemeier & Biehler, 2016) using a structuring and scaling qualitative con-
tent analysis approach (Mayring, 2015). In regard to the work of Pfannkuch (2007) 
and Biehler (2001, 2007a, 2007b), the preservice teachers were found to use many of 

Fig. 5.6 VSE task—boxplots of the distributions of the variable “Monthly_income” separated by 
“Gender” (Frischemeier, 2017, p. 515)
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the elements identified earlier in Sect. 5.5.1. In the study the level of each teachers’ 
reasoning was rated as high, medium, or low. A medium reasoning level was given 
when a difference was described (typically, “the mean of male employees is higher 
than the mean of female employees”). Reasoning that went a step further and inter-
preted the differences (typically, “male employees earn more than female employees 
on average”) was coded as high. A low coding was given when differences were 
worked out incorrectly. Major results of the study were that the participants used a 
broad spectrum of comparison elements, but overall showed at least only medium 
reasoning levels (no interpretation) on the elements they used for comparing groups.

One major finding with regard to the TinkerPlots use and the TinkerPlots skills 
of the preservice teachers when working on the VSE task (see Fig. 5.6) was that the 
participants showed high software skills and could conduct their statistical investi-
gations with TinkerPlots, but tended to neglect the interpretation of their graphs 
produced with TinkerPlots. Implications and recommendations for learning trajec-
tories for group comparisons for preservice teachers with TinkerPlots are to focus 
on the interpretation of findings by discussing adequate and non-adequate examples 
with peers and in the classroom. Furthermore, a data analysis scheme may help 
learners to structure their findings in a complex data analysis exploration 
(Frischemeier, 2017; Frischemeier & Biehler, 2016).

Before introducing students into the use and the comparison of boxplots, hat 
plots, which divide the data set in three areas (lower 25%, middle 50%, upper 25%), 
can offer an adequate preconcept for learners. Details on the use of hat plots can be 
found in Watson, Fitzallen, Wilson, and Creed (2008).

5.5.4  Reflections and Future Developments

This section distinguished several settings when comparing groups, identified some 
approaches in evaluating learners’ processes when comparing groups, and described 
the use of different frameworks: SOLO (Pfannkuch et al., 2004; Watson & Moritz, 
1999), five-tier framework (Makar & Confrey, 2002), and structuring and scaling 
approach (Frischemeier & Biehler, 2016; Pfannkuch, 2007). There are several points 
that might be interesting for further research. First, research on how learners com-
pare groups in the contexts of large open multivariate data sets are needed, espe-
cially with respect to how learners use software to determine differences between 
two distributions. Second, there is a need for the development of teaching and learn-
ing material to support the development of students’ skills in the interpretation of 
findings in a data analysis (or group comparison process). Third, there is a need to 
develop supporting material like data analysis schemes, which refer to sustainable 
group comparison elements like center, spread, skewness, shift, and p-based or 
q-based comparisons, that might be helpful to structure learners’ processes when 
comparing groups and to support tool use and exploration process. Another aspect 
worthy of further research related to the third aspect would be research on the docu-
mentation of findings of the data exploration process—especially when exploring 
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multivariate data with digital tools. Here the extraneous cognitive load of learners is 
high, because they have to concentrate on multivariate data, software use, and inter-
pretation and documentation of findings.

5.6  Reasoning About Covariation and Associations 
Between Variables

In Sect. 5.5 three types of association (see Konold et al., 1997) were distinguished: 
categorical vs. categorical, numerical vs. categorical, and numerical vs. numerical. 
Whereas so-called group comparisons are numerical vs. categorical as outlined in 
Sect. 5.5, the focus in this section is on the categorical vs. categorical and numerical 
vs. numerical types. In summary, this section considers research on learners’ rea-
soning about covariation and association in different settings (e.g., contingency 
tables, scatterplots, scatterplots with superimposed lines or curves), as well as 
examples of software tools that might enhance learners’ reasoning about association 
and covariation.

The section first looks at research that focuses on understanding contingency 
tables and scatterplots. Second, different frameworks for evaluating learners’ rea-
soning about covariation are considered. Finally, reports on the use of specific digi-
tal tools to enhance statistical reasoning when taking into account association and 
covariation are outlined.

5.6.1  Reasoning About Association and Reasoning 
About Covariation

Reasoning about association involves “the analysis of contingency tables, the deter-
mination of correlation between quantitative variables, and the comparison of a 
numerical variable in two or more samples” (Batanero, Estepa, Godino, & Green, 
1996, p. 151).

The first two types of association are the focus of this section as the third type was 
discussed previously under group comparisons. One important remark is that 
although one may want to find causal explanations that allow understanding of the 
environment, association does not necessarily indicate a causal relationship (Batanero 
et al., 1996). Further definitions of association can be found in Carlson, Jacobs, Coe, 
Larsen, and Hsu (2002), Zieffler and Garfield (2009), and Moritz (2004).

As in other fields of reasoning about data, data displays and tables are crucial to 
enhance learners’ insight into association. A paradigm display for type (1) associa-
tion is contingency tables and for type (2) scatterplots, but neither of these kinds of 
displays are straightforward for students. Whereas different percentages (e.g., cell, 
column, and row) in tables can be difficult for learners to interpret, scatterplots 
“provide information about two variables that are not necessarily dependent on each 
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other and show the correspondence of the ordination of each variable” (Moritz, 
2004, p.40 cited in Fitzallen, 2012). Difficulties for learners in decoding contin-
gency tables or scatterplots are also identified by Konold (2002). A basic problem 
that amplifies the difficulties is that understanding association requires the 
 coordination of deterministic conceptions (functional relationships) with statistical 
variation. This can be an obstacle for learners as pointed out, for example, by Noss, 
Hoyles, and Pozzi (2002).

As an overview, Garfield and Ben-Zvi (2008, p. 299) outlined the following gen-
eral findings on developing covariational reasoning and some prevalent conceptions 
and misconceptions of learners:

• “Students’ prior beliefs about the relationship between two variables have a great 
deal of influence on their judgments of the covariation between those variables;

• Students often believe there is a correlation between two uncorrelated events 
(illusory correlation);

• Students’ covariational judgments seem to be most influenced by the joint pres-
ence of variables and least influenced by the joint absence of variables;

• Students have difficulty reasoning about covariation when the relationship is 
negative;

• Students’ covariational judgment of the relationship between two variables tends 
to be less than optimum (i.e., smaller than the actual correlation presented in the 
data or graph);

• Students have a tendency to form causal relationships based on a covariational 
analysis.”

5.6.2  Reasoning About Association in Two-Way Contingency 
Tables

There is plenty of research on the reasoning about association in contingency tables 
beginning with Inhelder and Piaget (1955) and continuing with Batanero and col-
leagues to recent research from Watson and colleagues. Batanero et al. (1996) and 
further studies (Batanero, Estepa, & Godino, 1997; Batanero, Godino, & Estepa, 
1998) have built on the research of Inhelder and Piaget by observing students’ rea-
soning about associations in contingency tables. Specifically, they conducted 
research with 213 pre-university students (without specific prior knowledge of the 
domain) who were given a questionnaire with five tasks in which the students were 
asked to identify associations among given variables. The five tasks (see Batanero 
et al., 1996) varied in certain aspects: type of table (2 × 2, 2 × 3, 3 × 3), sign of the 
association (direct, inverse, independence), and relationship between context and 
prior belief (prior belief (“theory”) agrees with data, prior belief goes against data). 
The example in Fig. 5.7, taken from Batanero et al. (1996), is classified as “indepen-
dent” and “theory contradicted.”

R. Biehler et al.



175

Responses to the questionnaire items were coded for the type of association per-
ceived by the students (direct association, inverse association, or independence). 
Students’ strategies were categorized using the framework of Pérez Echevarría 
(1990), which categorizes students’ strategies for 2  ×  2 contingency tables (see 
Fig. 5.8 for format) into one of the following five levels:

• Level 1: Using only one cell in the table, usually cell [a]
• Level 2: Comparing [a] with [b] or [a] with [c]
• Level 3: Comparing [a] with [b] and [a] with [c]
• Level 4: Using all four cells in the table, employing additive comparisons
• Level 5: Using all four cells in the table, employing multiplicative comparisons 

(five levels of Pérez Echevarría, 1990, cited by Batanero et al., 1996, p. 154)

A major result of Batanero et al. (1996) was that the students showed good intui-
tive abilities for judging association in 2 × 2 contingency tables. A further result was 
that a large number of students were incapable of providing an argument for the 
3 × 3 contingency table (33 cases out of 213) or were unable to make a judgment of 
association in this table (49 additional cases). Here it can be said that the task is 
more difficult when the dimensions of the table are increased.

There are also several incorrect strategies that were observed by Batanero et al. 
(1996) when students have worked on the task. The authors distinguish the follow-
ing three types:

• Students with a determinist conception of association did not note exceptions to 
the existence of a relationship between variables and expected each value in the 
dependent variable to correspond to each value of the independent variable.

Item 1 (Smoking). In a medical center 250 people have been observed in
order to determine whether the habit of smoking has some relationship
with broncial disease. The following results have been obtained.

Bronchial
disease

Non bronchial
disease

Total

Smoke 90 60 150

Not smoke 60 40 100

Total 150 100 250

Using the information contained in this table, would you think that, for
this sample of people, bronchial disease depends on smoking? Explain
your answer.

Fig. 5.7 Display similar to Batanero et al. (1996, p. 168)
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• Students with a unidirectional conception of association recognized dependence 
only for direct associations and considered an inverse association as representing 
independence.

• Students with a “localist” conception of association used only part of the data in 
the contingency table to make a judgment of association (Batanero et al., 1996).

In a subsequent research project, Batanero et  al. (1997) described a teaching 
experiment that investigated preservice teachers’ understanding of association. A 
test was administered before and after the preservice teachers completed a course 
that included numerous topics on covariation and association. One result was that 
most preservice teachers overcame deterministic conceptions and accepted random-
ness. Another conclusion from Batanero et al. (1996, 1997) is worth noting: while 
the preservice teachers moved from an additive approach to using multiplicative 
comparisons, they still lacked proportional reasoning (Batanero et al., 1996). A sig-
nificant percentage of the students demonstrated good intuitive ability for judging 
association in 2 × 2 contingency tables, but had greater difficulty when the dimen-
sions of the table were increased. Students demonstrated the causal misconception 
throughout the course (Batanero et al., 1996, 1997). Additionally, problems with 
distinguishing the role of independent and dependent variables and problems when 
reasoning about relationships that were negative were strongly evident in these stud-
ies (see also Zieffler & Garfield, 2009).

The ideas and problems of Batanero et al. (1996, 1997) have been used in more 
recent research. Watson, Callingham, and Donne (2008) administered an associa-
tion problem (the lung disease problem) from Batanero et al. (1996, 1997) to stu-
dents and used the students’ responses to evaluate teachers’ pedagogical content 
knowledge (PCK). The teachers were provided with student answers to the problem 
and asked which typical responses their students would give on the item, how the 
teachers would use the item in the classroom, and to write a response to the student 
answers. Similarly, Watson and Callingham (2014) administered the same associa-
tion problem to 110 students from Year 6 to Year 11. Teachers were shown the 
association problem and asked in an interview to name the big statistical ideas that 
were embedded in the lung disease problem, give examples of appropriate and inap-
propriate responses of students, and state opportunities for teaching the given prob-

B Not B Total

A a b a+b

Not A c d c+d

Total a+c b+d a+b+c+d

Fig. 5.8 Typical format 
for a 2 × 2 contingency 
table (similar to Batanero 
et al., 1996, p. 153)
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lem. Then the teachers were shown student responses and were asked to explain 
“how to move this student’s understanding forward” (Watson & Callingham, 2014, 
p. 260). All hierarchies and rubrics for evaluating student and teacher reasoning and 
ensuing analysis are described in detail in Watson and Callingham (2014). Further 
research on school students reasoning when working on the lung disease problem 
and the indigestion problem can be read in Watson and Callingham (2015). Studies 
on preservice teachers’ understanding of aspects of probability of basic events have 
been conducted by Estrada Roca and Batanero (2006) and Contreras, Batanero, 
Diaz, and Fernandes (2011). Research on primary school students’ strategies in 
solving contingency table problems with special focus on the role of intuition and 
inhibition can be found in Obersteiner et al. (2015).

Examples of research on student and adult reasoning while engaging with 
Bayesian probability problems, which is also related to reasoning about associa-
tions in mxn contingency tables, include studies by Gigerenzer (1996, 2002), 
Wassner (2004), and McKenzie and Mikkelsen (2007). One major idea coming out 
of these studies is to use natural frequencies rather than relative frequencies when 
introducing Bayesian probability problems. Readers are referred to these studies for 
further detail of students’ reasoning about Bayesian probabilities.

5.6.3  Reasoning About Associations Between Numerical 
Variables

This subsection refers to the third type (numerical vs. numerical) of association and 
presents two exemplary research studies, the study of Moritz (2004) focusing on 
reasoning about covariation among elementary and middle school students and the 
study of Zieffler and Garfield (2009) dealing with the reasoning about covariation 
of undergraduate students. In the study of Moritz (2004) with elementary and mid-
dle school students, three skills needed for reasoning about covariation among ele-
mentary and middle school students were named: speculative data generation, 
verbal graph interpretation, and numerical graph interpretation. Survey responses 
were collected from 167 students in Grades 3, 5, 7, and 9. Task 1 assessed specula-
tive data generation by asking students to draw a graph for a verbally given covaria-
tion. Task 2 assessed both verbal and numerical graph interpretation by having 
students respond to questions related to a given scatterplot. The analysis categorized 
students’ success in verbally generalizing the required covariation and numerically 
interpreting covariation into four levels: nonstatistical, single aspect, inadequate 
covariation, and appropriate covariation. According to Moritz (2004), numerical 
graph interpretation was highly correlated with both verbal graph interpretation and 
speculative data generation, whereas there was a weaker correlation between verbal 
graph interpretation and speculative data generation. Moritz also found evidence 
that all students were engaged in the task as most students could identify at least one 
aspect related to the data. Overall, Moritz identified two misconceptions/erroneous 
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approaches and one difficulty learners face when reasoning about covariation: 
focusing on isolated bivariate points; focusing on a single variable in a bivariate data 
plot; and reasoning about a negative relationship that contradicted prior belief.

In their studies with undergraduate students, Zieffler and Garfield (2009) exam-
ined the development of reasoning about quantitative bivariate data in a one- 
semester introductory statistics course. One of their aims was to identify patterns of 
change in students’ reasoning about quantitative bivariate data throughout the 
course. Three instruments were used to collect student data on four occasions dur-
ing the course across four cohorts of students. Analysis of the data revealed that 
marked growth in reasoning about bivariate data happened primarily during the first 
unit of the course, before bivariate data was formally taught, and that students’ rea-
soning about bivariate data did not increase in a constant linear fashion. They sug-
gested that the development of students’ reasoning about bivariate data may be 
generally related to their development of statistical reasoning rather than a result of 
formal instruction and is directly related to their reasoning about distributions.

Going one step further to the reasoning about correlation and regression, Engel 
and Sedlmeier (2011) identified three issues related to understanding correlation 
and regression: psychological biases, mathematical difficulties, and difficulties with 
the functional understanding of associations. Psychological biases occur when stu-
dents have difficulties making judgments about associations for psychological rea-
sons, such as, influence of previous beliefs. Mathematical difficulties are 
misconceptions based on mathematical content, such as the misconception that a 
high correlation does not imply validity of a linear model. Difficulties with the func-
tional understanding of associations are unidirectional conceptions of association 
where learners consider only positive relationships to represent an association and 
inverse relationships to represent independence. The misconceptions across all 
three issues are listed in Table 5.2.

Many of the identified psychological biases and mathematical difficulties are 
related to a deterministic world view (Engel & Sedlmeier, 2011). To achieve a better 

Table 5.2 Several misconceptions of students when thinking of correlation and regression (table 
similar to Engel & Sedlmeier, 2011, p. 248)

Psychological biases • Influence of previous beliefs
• Illusory correlation
• Misjudgment of strength of covariation
• Confounding variables
• Regression effect regarded as real effect
• Transitivity misconception

Mathematical difficulties • Association instead of dependence
•  High correlation does not imply validity of a 

linear model
• Interpreting the correlation coefficient

Difficulties with the functional understanding 
of associations

• Deterministic conception of association
• Unidirectional conception of association
• Local conception of association
• Causal conception of association
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appreciation of statistical associations and the role of variation of statistical data, 
they introduced different versions of the “signal and noise” representation of data 
(Fig.  5.9). These different interpretations of “signal and noise” are expected to 
counteract overreliance on deterministic thinking. Engel and Sedlmeier (2011) sug-
gested that curricula need to be based on knowledge of students’ potential fallacies 
and misunderstandings, should make use of real data and technology, and provide 
experience with modeling to overcome the shortcomings listed in Table 5.2.

Additionally, Engel and Sedlmeier (2011) offered several recommendations to 
overcome the shortcomings mentioned in Table 5.2. Educators should make use of 
fallacies and misunderstandings: real data, experience in modeling, and technology. 
Like other researchers, they saw the huge potential of the use of technology to over-
come shortcomings when thinking about associations of data. As an example, they 
referred to residual plots that can easily be displayed in Fathom and that allow the 
user to investigate the deviation between model and data. Several software packages 
and tools have the potential to enhance the understanding of covariation and are 
discussed in the Sect. 5.6.4.

Regression models aim at modeling relationships between numerical variables. 
One special case of regression that can be taught in secondary school is linear 
regression. In regard to the association between students’ conceptualizations of 
slope and students’ understanding of the line of best fit, Casey and Nagle (2016) 
investigated in which way students are able to accurately place a line of best fit in 
given scatterplots relative to the least-squares regression line. They distinguished 
different slope conceptualizations of learners like linear constant, behavior indica-
tor, real-world situation, functional property, trigonometric conception, and physi-
cal property. Definitions and examples of each conceptualization can be found in 
Casey and Nagle (2016). In a follow-up qualitative study, the authors conducted 
task-based interviews with seven students (Grade 8) concerning the placement and 
concerning their reasoning about the line of best fit in four different task settings, 
where scatterplots were given. One result of the study was that the conceptualiza-
tion of slope of these students plays a significant role when reasoning about the 
placement of the line of best fit.

Statistics education has to develop concepts and supporting materials to help 
learners to deal with challenging topics like regression. Also identifying preliminary 
stages to difficult concepts or displays could be helpful. A good example of how to 
support the reading and interpretation of a scatterplot is given by Noss et al. (2002). 

Data

Signal
Structure
Model Fit
Explained

Noise
Randomness

Residual
Unexplained Variation

= +

Fig. 5.9 Different versions of the signal-noise representation of data (display similar to Engel & 
Sedlmeier, 2011, p. 253)
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The authors provided approaches to helping nurses gain a deeper understanding of 
covariation in scatterplots. Their approach is related to Konold’s (2002) “sliced scat-
terplots” (see Fig. 5.11) method: slicing a scatterplot bridges the gap between statis-
tical variation and deterministic dependence. In sliced scatterplots a continuous 
variable is reorganized into categories (see Figs. 5.10 and 5.11 in the next section). 
The intention of a sliced scatterplot display is that students can see “each vertical 
slice of data in this plot as a distribution of a discrete group, [and that] students can 
apply skills they have learned in comparing two distributions to visually compare 
the centers of the distributions in the sliced scatterplot” (Konold, 2002, p.  3). 
Technology is very helpful for changing scatterplots into sliced scatterplots and back 
again. Further possibilities of enhancing students’ reasoning about association or 
covariation with digital tools follow in the next section.
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Fig. 5.11 Scatterplot slices (left, a) and ordered case value bars (right, b) similar to Konold (2002, 
pp. 2–3)
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5.6.4  Technology to Enhance a Better Understanding 
of Association and Covariation

An overview of technology that supports learner’s reasoning when analyzing data is 
given in Biehler, Ben-Zvi, Bakker, and Makar (2013). TinkerPlots (Konold & 
Miller, 2011) and Fathom (Finzer, 2007) support the exploration of association 
between variables in two-way tables by enabling the students to easily switch 
between column, row, and cell percentages. Similarly, Pfannkuch and Budgett 
(2017) introduced eikosograms to help students visualize association between vari-
ables and to build conditional probability concepts, respectively, to better visualize 
data from two-way contingency tables.

The use of technology may also enhance covariational thinking. Therefore it is 
important to know which digital tools are at hand and how these digital tools may 
enhance covariational thinking. For example, tools can help learners to create sliced 
scatterplots which were described in Sect. 5.6.3. Cobb, McClain, and Gravemeijer 
(2003) observed the covariational reasoning of students using minitools5 for identi-
fying patterns in the relationship between two numeric variables. The instruction 
guided students to the question of how the dependent variable changes “on average” 
with the independent variable. As an example, Cobb et al. (2003) used the investiga-
tion of association between time (year) and CO2 (ppm). The minitools offered the 
possibility of displaying the data with the scatterplot divided into four equal-sized 
parts (see Fig. 5.10a). Another feature of minitools was the separation of several 
slices of the scatterplot into equal interval subgroups based on the independent vari-
able (see Fig. 5.10b). Comparison of medians in each consecutive subgroup helps 
students see how CO2 levels rise over time. Based on the results of the interview 
study, Cobb et al. (2003) suggested starting with the shape of distributions rather 
than with variability of distributions.

The valuable features of the minitools were deliberately integrated into the soft-
ware TinkerPlots (Konold & Miller, 2011). It offers additional possibilities for gain-
ing insight into covariation between two numerical variables. Like Cobb’s minitools, 
TinkerPlots offers the option of displaying sliced scatterplots—in this case display-
ing the means (triangles in Fig.  5.11a) of the subgroup distributions. Using 
TinkerPlots, Konold (2002) explored the data of Noss, Pozzi, and Hoyles (1999) 
with sliced scatterplots (see Fig. 5.11a) to show how TinkerPlots can be used to sup-
port the conceptual development that Noss et al. were aiming for. Another example 
given by Konold (2002) is the exploration of association between brushing time and 
plaque when brushing teeth using ordered case value bars in TinkerPlots (see 
Fig. 5.11b).

Moreover, TinkerPlots offers a color gradient feature, which might be especially 
useful for younger students to represent and study an association between two vari-

5 The development and the implementation of these minitools were the starting point to develop the 
educational software TinkerPlots, which includes the features of the minitools.
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ables. For example, Konold (2002) investigated the relationship between the body 
length and age of cats. The TinkerPlots display in Fig. 5.12a does not imply a rela-
tionship between body length and age of cats (intensity of gray shade displays the 
age in years), since older cats can be found in the middle and on the almost right end 
of the distribution. However, when taking into account the variable gender, it can be 
seen (Fig. 5.12b) that male cats (white points) tend to have a larger body length than 
female cats (gray points).

The potential of TinkerPlots to enhance covariational reasoning was investigated 
in the PhD thesis of Fitzallen (2012). Fitzallen investigated learning sequences 
about covariation with TinkerPlots and the related learning processes of students. In 
student interview task settings, where students (Years 4, 5, and 6) had been working 
with TinkerPlots on exploring covariation in real data, three different strategies of 
these students could be observed (Fitzallen, 2012): snatch and grab, proceed and 
falter, and explore and complete. Whereas students following the snatch and grab 
strategy often neglect to interpret the data, students following an explore and com-
plete strategy show the most sophisticated covariational reasoning with TinkerPlots 
because they used TinkerPlots effectively to interpret their graphs and successfully 
combined their knowledge on how to use TinkerPlots and how to interpret the 
graphs they generated with TinkerPlots.

Fitzallen (2012) conducted further research to investigate how students develop 
an understanding of covariation with TinkerPlots. Reasoning about covariation was 
rated with the codes unistructural, multistructural, and relational of the SOLO 
Taxonomy. Of the 12 students taking part in the study, the covariational reasoning 
of six students was rated unistructural, the reasoning of three students was rated 
multistructural, and of three students it was rated relational. Fitzallen concluded 
that “the introduction of the concept of covariation can be adopted for upper pri-
mary students” (p. 240), but there were still shortcomings, since half of the students 
showed unistructural covariational reasoning.
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Fig. 5.12 Examples of using the color gradient in TinkerPlots for the variables body length and 
age (a) and for the variables body length and gender (b) similar to Konold (2002, pp. 4–5)
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5.6.5  Reflections and Future Developments

Having a look back on Sect. 5.6, many different aspects of association and covaria-
tion have arisen. Research on learners’ reasoning about covariation and association 
in different settings (e.g., contingency tables, scatterplots, scatterplots with super-
imposed lines or curves) and examples of software tools that might enhance learn-
ers’ reasoning about association and covariation have been considered in this 
section.

One thing that consistently comes out in the research on covariation is the chal-
lenge of getting students to reason from the data itself and to consider setting aside 
previous beliefs. The whole paradigm of making data-based decisions and data- 
based inferences is quite foreign to many students. This is one finding that chal-
lenges both researchers and teachers to get students into situations and tasks, where 
they can confront their own biases and beliefs, and begin to put on a “data detec-
tive” hat.

5.7  Conclusion

This chapter has primarily concentrated on research on student and teacher reason-
ing about variation, distribution, comparing groups, and associations and covaria-
tion between variables. One main idea may be identified across this chapter: 
frameworks to rate students’ and teachers’ statistical reasoning. Many qualitative 
studies applied the SOLO Taxonomy to rate learners’ statistical reasoning in 
responses to open-ended complex tasks, and the SOLO taxonomy has been used to 
categorize such reasoning for nearly all statistical concepts. While the SOLO 
Taxonomy proves to be a powerful tool for rating learner reasoning in different 
fields, future empirical studies might tend to consider more open analysis methods 
like Grounded Theory (Corbin & Strauss, 1994) or an inductive-enriched Qualitative 
Content Analysis (Mayring, 2015), ensuring that frameworks for student reasoning 
arise from the data (e.g., interviews, videos) itself.

With regard to technology, this chapter showed the potential of using appropriate 
software to enhance student and teacher reasoning about data. Educational software 
like Fathom and TinkerPlots can support student reasoning about distribution in 
varying displays of data and moving them from a local to a global perspective on 
data. When comparing groups, software may help students see differences between 
groups in even large data sets and enable learners to use individual comparison 
approaches (like p-based comparisons). When dealing with associations of vari-
ables and covariation, tools like Fathom and TinkerPlots can provide deeper insights 
when switching views between cell, column, and row percentages and help to pro-
duce sliced scatterplots so that covariational reasoning can be related back to stu-
dents’ understanding of univariate distributions and comparisons of groups. It is still 
an important issue in future research to better understand the purpose, the con-
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straints, and the possibilities of digital tools and to research learning environments 
that make use of technologies.

Several recurring issues for the teaching and learning of data analysis have 
emerged throughout this chapter. The research has consistently found that students 
tend to provide surface level descriptions when asked to analyze data, interpret 
graphs, or compare groups. To better develop learners’ reasoning about data, the 
research suggests that it may be important to provide learning activities that system-
atically guide them from a local to a global view on distributions, to sensitize learn-
ers to variability in the data, and to motivate them to go beyond surface level 
descriptions of what can be seen in data to a more substantial interpretation. For 
example, it is important to encourage learners to move beyond just reading the data 
to reading beyond the data (prediction, inference, and interpretation) and to reading 
behind the data (contextual and data production issues) and eventually to looking 
for relationships with other variables and to potential causes (for the three levels 
reading the data, reading between the data, and reading behind the data, see, e.g., 
Friel et al., 2001). This might be done by providing students with norms for ade-
quate and non-adequate interpretations of data and graphs. Similarly, for developing 
learners, providing them with a data analysis scheme when reasoning about 
 comparing groups may help them to better structure and to document their findings 
in their exploration process. Here it would be also important to provide learners 
with a process which can help them move from a mere description of findings to a 
deeper interpretation of findings when comparing groups. The development and 
implementation of structured norms for the analysis and interpretation of data may 
prove to be a fruitful area for future research on the teaching and learning of data 
analysis.

Reasoning about data was important in the past, is important in the present, and 
will be—especially in the upcoming big data era—even more critical for the future. 
Nowadays there is a huge quantity of data available via the Internet and other media, 
and many decisions in politics, economics, and society are based on statistics. In 
this respect, data science which combines disciplines like mathematics, statistics, 
computer science, and information science has the aim to cope with the huge amount 
of data and to extract important information of the data. Data science will be a rising 
and important field (of teaching and research) in the future.

So, to achieve informed participation in public decision processes, it is inevitably 
vital for concerned citizens to be statistically literate. To educate statistically literate 
citizens, teachers have to be prepared well for teaching statistics. Collaboration and 
intellectual conversations have been found to be a good way for teachers to improve 
their own reasoning about data. Teacher educators should include thoughtful atten-
tion to data analysis in the training and professional development of preservice and 
in-service teachers, especially since many teachers have little experience them-
selves in data analysis and statistical thinking.

For researchers, the future challenge is to deepen the research on learners’ con-
ceptions and misconceptions when reasoning about data. For teachers, the future 
challenge is to design and enhance activities and learning environments to develop 
sustainable reasoning about data across all ages of students.
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Chapter 6  
Research on Uncertainty          

Dave Pratt and Sibel Kazak

Abstract We discuss research on the teaching and learning of uncertainty, with a 
particular emphasis on quantifiable aspects as might be represented by probability. 
We acknowledge earlier reviews of the field by integrating research, especially from 
the last 10  years, with previous studies. In particular, we focus on three issues, 
which have become increasingly significant: (1) the realignment of previous work 
on heuristics and biases, (2) conceptual and experiential engagement with uncer-
tainty and (3) adopting a modelling perspective on probability. The role of the 
teacher in shaping the learning environment in various critical ways emerges as a 
key finding. In the concluding section, we indicate promising directions for research, 
including the need for more exploratory research in new areas such as the role of 
modelling and carefully designed experiments to test hypotheses that are apparent 
from more established studies.

Keywords Probability • Heuristics • Biases • System 1 • System 2 • Modelling • 
Scaffolding • Dialogic thinking • Distribution • Sample space

6.1  Introduction

The notion of uncertainty is a broad concept that includes phenomena that lie out-
side the domain of statistics, which focusses on uncertainty due to random variation, 
when it is often possible to make inferences and predictions. Within this subset of 
uncertainty, it is sometimes possible to measure how uncertain a phenomenon is, 
and we refer to this term as ‘probability’. Probability theory provides tools for 
expressing, quantifying and modelling uncertainty. This chapter focusses on 
research concerning those key ideas and issues in uncertainty and probability that 
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are seen as conceptual links to statistics. We first give an overview of the previous 
reviews related to the topic and then introduce our approach to reviewing the 
research literature beyond those covered in the preceding documents.

There have been several edited books (e.g.Chernoff & Sriraman, 2014; Jones, 
2005; Kapadia & Borovcnik, 1991) and a number of major review chapters and 
reports on research in probability since probability and statistics started to become 
part of the mainstream school mathematics curricula in many countries. In his 
review in the Handbook of Research on Mathematics Teaching and Learning, 
Shaughnessy (1992) set the stage by addressing the absence of probability and sta-
tistics in school mathematics, particularly in the USA prior to The Curriculum and 
Evaluation Standards for School Mathematics (NCTM, (1989). He then used philo-
sophical and historical influences in the development of probability as the backdrop 
for research in probability and statistics. In Shaughnessy’s (1992) review, studies in 
the research literature were clustered in three main areas: (1) different types of 
thinking used in making an inference or judgement under uncertainty (i.e. heuris-
tics, biases and misconceptions) that are identified and documented primarily within 
the psychology research tradition, such as the influential work of Daniel Kahneman 
and Amos Tversky in the 1970s and 1980s, (2) development of concepts of proba-
bility in different age levels and (3) effects of interventions, such as types of tasks, 
instructional approaches and use of computer technology, on students’ conceptions 
of probability.

Another important review of the existing research at that time by Borovcnik 
and Peard (1996) focussed on probabilistic thinking and teaching of probability in 
the school mathematics curriculum. Borovcnik and Peard shed light on what hin-
dered learning of probability by making distinctions between probability and 
other mathematical concepts and similarly between probabilistic thinking and 
other types of thinking (logical and causal). They also described how the history 
of teaching probability evolved both in Europe and the USA as probability and 
statistics became part of the school mathematics curricula in different countries. 
Then various didactical approaches aiming to enhance teaching probability were 
discussed.

In the Second Handbook of Research on Mathematics Teaching and Learning, 
Jones, Langrall, and Mooney’s (2007) chapter revealed how much progress had 
been made both in the treatment of probability in curriculum documents and the 
research tradition since Shaughnessy’s (1992) review. One of the focusses of Jones 
et al. (2007) was the content and pedagogical insights of three curriculum docu-
ments from the USA, the UK and Australia at different grade levels (elementary, 
middle and high school), which were published around the same time. In these cur-
riculum documents, introduction of probability to students started at early grades in 
the elementary school while they began to focus on more advanced ideas in proba-
bility at the high school level. In terms of pedagogy, the tasks at the elementary 
grades were more in line with students’ experiences in the way that they allowed 
students to test their intuitions and overcome their misconceptions. As students 
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reached advanced levels, investigations and applications were emphasised. 
Simulations and modelling chance situations, which had been suggested in 
Shaughnessy’s (1992) review, were seen to become part of the middle grades and 
high school curricula (Jones et al., 2007).

The research literature covered in Jones et al. (2007) also reflected these changes 
in mathematics curricula by focussing on various conceptual topics relevant to 
probability, such as chance and randomness, sample space, probability measure-
ment (including conditional, theoretical and empirical probabilities) and cognitive 
models of probabilistic reasoning. Related to the research on teaching of probabil-
ity, Jones et al. highlighted the contributions made about teachers’ content knowl-
edge, pedagogical content knowledge and knowledge of student cognition in 
probability. Another distinct topic raised in this review was the idea of probability 
literacy based on Gal’s (2005) work and its implications for content and pedagogi-
cal approaches in probability instruction.

Bryant and Nunes (2012) provided a detailed report on research documenting 
children’s difficulties in learning and reasoning about probability and recommenda-
tions for future research, particularly on methodological aspects. They argued that 
four ideas in probability were key to successful learning in probability: (1) under-
standing randomness and its consequences, (2) analysing the sample space, (3) 
quantifying probability as a ratio and (4) developing correlational reasoning which 
involved the coordination of the previous three ideas. The omission of aggregate 
thinking as relating to distribution—rather than just sample space—is surprising in 
the light of research reported below.

More recently Watson, Jones, and Pratt (2013) took a critical approach when 
reviewing research studies into students’ reasoning about uncertainty, many of 
which were mentioned in the previous reviews. Unlike others written mainly for 
researchers, the primary aim of this work was to elaborate the research-based find-
ings to support pre-service and in-service teachers’ understanding of the key issues 
about students’ learning about probability. Given the technological tools that have 
become available in recent years, the use of simulations and modelling to help stu-
dents develop reasoning about uncertainty was again emphasised in Watson et al.’s 
review, including for young students.

Our aim in this chapter is to focus on three issues that we see as key develop-
ments emerging out of the history of the topic as captured by previous reviews 
mentioned above. The first issue, the realignment of heuristics and biases, is chosen 
because the research on heuristics has been a major focus of research in the field for 
many decades and a recent publication makes it timely to reconsider that body of 
work. The second issue, conceptual and experiential engagement with uncertainty, 
gives an account of recent developments in the main effort of research in the field, 
some of which might in fact be influenced by the first issue. The third issue, adopt-
ing a modelling perspective on probability, emerges directly from considerable 
development in the use of technology for teaching and learning and also for research-
ing students’ ideas about uncertainty. As we introduce each of these three key issues 

6 Research on Uncertainty



196

in the following sections, we give an overview of the research in learning and teach-
ing of probability over the last 10 years and look forward to future research in 
this domain.

6.2  The Realignment of Heuristics and Biases

6.2.1  Introduction

We begin our review with discussion of an issue that has informed—some would 
say beset—research on probabilistic thinking for several decades. The issue in ques-
tion was a particular focus of the review of research in probability and statistics, 
which is now more than two decades old (Shaughnessy, 1992), and has led to an 
industry of research identifying misconceptions and correlating them in support of, 
or in contradiction to, the original work. We speak of course about the seminal work 
by Daniel Kahneman and Amos Tversky (e.g. Kahneman, Slovic, & Tversky, 1982), 
which claimed to catalogue the biases inherent in heuristics that we all use to make 
judgements of chance. This research has recently achieved new currency because of 
Kahneman’s publication on Thinking, Fast and Slow (Kahneman, 2011a), which has 
reconceptualised the original research and, in doing so, has responded to some of 
the original criticisms. Kahneman’s realignment of his own work on heuristics has 
implications for interpretation of the wealth of research on probabilistic thinking, 
especially as related to misconceptions, that has emanated from the original work in 
the 1970s and 1980s.

Our approach to discussing this key issue will be first to summarise the original 
work. This can be done briefly since there are many full accounts available else-
where, not least in the review by Shaughnessy (1992). We will then discuss some of 
the criticisms that emerged over subsequent years. All of this will be preparation for 
a detailed account of Kahneman’s fresh perspective on that work, followed by a 
discussion of whether the old criticisms still stand and implications for research in 
the field.

Kahneman and Tversky conducted a series of carefully designed psychologi-
cal experiments where subjects were given tasks, either orally or in paper and 
pencil form. Kahneman and Tversky noted the errors that subjects made when 
their responses were compared with normative probabilistic or statistical solu-
tions to the task. They identified a number of patterns in those errors and 
accounted for these patterns in terms of the subjects using rules of thumb, per-
haps subconsciously, which they referred to as heuristics. Kahneman and Tversky 
explained how errors resulted from the bias, which was inherent in the heuristics 
being used.

As explained above, it would be inappropriate here to detail the huge array of 
heuristics identified, especially as each of the heuristics also has many variations 
and specific types. Nevertheless, some readers may wish to have a sense of the origi-
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nal work without needing to know all of that detail, so we will describe here two of 
the main heuristics identified by Kahneman and Tversky.

6.2.2  Two Heuristics from the Original Research and Recent 
Developments

When people use the representativeness heuristic, they judge the likelihood of an 
event according to how well the outcome experienced matches the system that gen-
erated the outcome or the population from which the outcome was drawn. The well- 
known gambler’s fallacy might be accounted for by the use of the representativeness 
heuristic. Thus, after observing six successive red numbers appear on the roulette 
wheel, the gambler might place his bet on the appearance of a black number (an 
approach referred to as negative recency). Kahneman and Tversky argue that the 
gambler might believe that the outcomes should match the sample space, which 
consists of an equal number of red and black numbers, and so the judgement may 
have been made that a black number should appear in order to ‘correct’ the sequence 
of reds. The representativeness heuristic operates in the gambler’s judgement by 
attempting to match the outcomes with the sample space.

Another situation in which the representativeness heuristic can lead to erroneous 
judgement is when a specific condition is regarded as more probable than a single 
general one, often referred to as the conjunction fallacy. For example, given a pen 
portrait description of Linda as a woman who is single, outspoken and very bright 
and deeply concerned with issues of discrimination and social justice, it is not 
unusual for subjects to respond that Linda is more probably a bank teller and active 
in the feminist movement than that Linda is a bank teller.

Kahneman and Tversky argue that the representativeness heuristic will often pro-
vide correct judgements, but since representativeness does not allow for the vagaries 
of random chance, nor the laws of probability, there will be situations in which 
representativeness generates the wrong judgement, a systematic error that the 
authors refer to as ‘bias’.

A second major heuristic identified by Kahneman and Tversky is ‘availability’. 
People sometimes make a judgement about the chance of an event on the basis of 
how easily they are able to evoke particular instances of the same or similar events. 
For example, the risk of a crash by the aeroplane in which you are travelling may 
seem disproportionately high (when compared to the frequency of recorded acci-
dents) if there has been a recent widely reported tragic case of such an incident in 
which many people died. As with representativeness, the availability heuristic will 
often generate a correct judgement, but how easily instances of an event can be 
evoked is highly sensitive to the salience of the event. The salience of an event is not 
generally related to its likelihood, which results in a bias inherent in the availability 
heuristic.
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In the last 10 years, there has been further research on the trajectory over time of 
heuristics and biases and errors. Bennett (2014) studied 163 first year college stu-
dents (though this group was divided into several treatments, so the sample size for 
any one experiment was in the low 30s). The study found that students working on 
tasks inspired by the Monty Hall problem demonstrated a strong tendency for their 
decisions to be shaped by the ‘endowment effect’, an unwillingness to tempt fate by 
changing one’s mind about a decision in the light of further information, even when 
a rational decision according to probability theory would be to do so.

Chiesi and Primi (2009) investigated how the errors due to negative (and posi-
tive) recency developed or receded with age. They tested 23 primary school third 
graders, 25 primary school fifth graders and 35 college students. They found that 
whereas positive recency (e.g. in which the gambler would bet on another red num-
ber at the roulette wheel after a sequence of red numbers) decreased with age, the 
negative recency effect was unaffected over time.

Kustos and Zelkowski (2013) examined misconceptions in probability tasks in 
the form of a survey consisting of open-ended structured questions for between 500 
and 600 students across grades 7, 9, 11 and also those of 40 third year pre-service 
mathematics teachers. These misconceptions included inter alia recency effects and 
representativeness, in other words some of the errors that arise, according to 
Kahneman and Tversky, from biases in heuristic thinking. They found that the 
recency effect and representativeness dissipated with age.

There is an evident discrepancy between the above two studies of how miscon-
ceptions arising from heuristic thinking develop. The large-scale study of Kustos 
and Zelkowski suggests that factors in the development of students in middle- to 
high-achieving schools in Alabama have a positive impact on the students’ probabi-
listic reasoning. Although the researchers offer implications for teaching, these 
must be regarded as speculative as pedagogy was not investigated in the study. The 
smaller study of Chiesi and Primi took place in Italian public schools, and it is 
entirely possible that factors impacting on the development of these students were 
very different. It is also possible that the sample size in this study was too small. 
Further research is needed before we can understand these conflicting results, and it 
may be that a better theoretical understanding of heuristic thinking is needed before 
we can really predict how errors might be affected by schooling or age. A new theo-
retical understanding is perhaps now beginning to emerge and is discussed later in 
this section.

6.2.3  Criticisms of Kahneman and Tversky’s Original Work 
on Heuristics

The main critic of the heuristics and biases approach of Kahneman and Tversky has 
been Gerd Gigerenzer. In his own work, Gigerenzer has advocated the use of natural 
frequencies instead of probabilities or proportions to communicate risk (e.g. Meder 
& Gigerenzer, 2014). Bodemer, Meder, and Gigerenzer (2014) demonstrated that 
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people with a wide range of numeracy levels were less likely to interpret relative 
risk reductions in heart disease as absolute reductions when the baseline risks were 
presented in frequency format than when they were presented as percentages. We 
note however that Diaz and Batanero (2009) conducted a comparison of perfor-
mance amongst 206 students, who took a test after a teaching unit on conditional 
probability, with a comparable group of 177 students, who took the test before the 
course. They argue that detailed analysis of the types of errors apparent at different 
stages of a solution led them to teaching approaches that have demonstrated 
improvement in performance, even when probabilities rather than natural frequen-
cies were used in conditional probability problems. (Specific cases where they did 
not find improvement are reported below.)

Gigerenzer (1991) has argued that some of the errors identified by Kahneman 
and Tversky disappear when the information is presented in a frequency format. 
Kahneman (1996) in turn has responded that their own studies supported the notion 
that presentation format impacted on the use of heuristics. However, he argued that 
this did not undermine the observation that subjects made systematic errors when 
presentations were not frequency based. Kahneman added that, though these errors 
might have been reduced, they did not disappear when the format was changed to 
one of natural frequencies, except perhaps in some very specific types of heuristic, 
such as the conjunction fallacy. Interestingly, in the Diaz and Batanero (2009) 
study, using probabilities rather than natural frequencies, the conjunction fallacy 
was one of the few errors that was resistant to improvement through their teach-
ing methods.

Gigerenzer (1994) has also argued that there are difficulties with Kahneman and 
Tversky’s focus on errors, which requires a normative position against which to 
judge the subjects’ responses. They argue that there is fundamental disagreement 
amongst statisticians about the nature of probability, especially in relation to unique 
events, where a frequentist interpretation of probability does not apply. Of course, 
in many situations frequentist and subjective interpretations of probability converge 
and Kahneman (1996) pointed out that much of their historical work was not based 
around subjective probabilities. In fact, Gigerenzer’s (1993) philosophical position 
regarded people’s use of heuristics as rational acts, where decision-making appara-
tus has evolved so that decisions can be made when time and resources are limited. 
In his view, such apparatus rationally seeks out heuristic-based methods of decision- 
making at the expense of accuracy and that these rational methods can be more 
accurate than formal methods. Hence, whereas Kahneman and Tversky have presented 
a fallible human who makes errors due to the use of inherently biased heuristics, 
Gigerenzer has offered a rational human who uses heuristics that are often accurate 
to make quick decisions on complex judgements of chance.

Perhaps, this theoretical difference goes to the heart of the prolonged dispute that 
has stretched across many publications, through the 1980s and 1990s. Although in 
his review, Shaughnessy (1992, p. 470) referred to the Kahneman and Tversky work 
as providing a theoretical framework for mathematics educators, one criticism of 
the work has been that it is in fact atheoretical. In response, Kahneman (1991) 
argued:
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I take the distinctive feature of theory to be a commitment to completeness (within reason) 
and a consequent commitment to critical testing, in a specified domain of refutation, which 
is often quite narrow. (p. 143)

The difficulty for educationists lies in how to interpret Kahneman and Tversky’s 
original work without a theoretical account of knowledge, thinking and learning. 
The catalogue of errors might be interpreted as suggesting that fallibility with 
respect to judgements of chance is integral to the human condition, which would be 
a bleak interpretation for those who hope to intervene in a student’s understanding 
of probability. On the other hand, perhaps awareness of the bias in the use of heuris-
tics, such as representativeness and availability, could be sensitised with the possi-
ble effect of improved judgements of chance. Clearly, as psychologists with an 
interest in decision-making, Kahneman and Tversky were not attempting to offer 
advice to educationists. Nevertheless, the recent publication, Thinking, Fast and 
Slow, by Kahneman (2011a), does situate the original research in a theoretical 
framework, which makes it possible to interpret the implications of the original 
work in new ways, and perhaps sheds new light on the theoretical difference between 
Kahneman and Gigerenzer.

6.2.4  Heuristics as Part of System 1 and System 2 Thinking

Kahneman (2011a) has recently adopted dual process theory, and in particular the 
terminology of Stanovich and West (2000), to refer to System 1 thinking as auto-
matic, quick and requiring little or no effort with no sense of voluntary control. In 
contrast, he stated that System 2 thinking is effortful, often involving complex com-
putations, associated with agency, choice and concentration. To take one of 
Kahneman’s examples, look at the following problem: 17 × 24. System 1 tells you 
immediately that this is a multiplication problem (and may even allow you to esti-
mate a rough answer). However, to compute the actual value requires the slow 
thinking of System 2. Loosely speaking, if System 1 were regarded as intuition, 
System 2 could be thought of as formal reasoning. Kahneman argued that much 
decision-making, and certainly that which involved the heuristics he had identified 
in his earlier work, operated at the automatic, largely subconscious level of System 
1, whereas the careful application of scientific theory and procedures to reach a 
decision demanded the effort of System 2. While System 1 by default was triggered 
automatically to make quick decisions, often with limited evidence, occasionally 
System 2 was activated when System 1 ran into trouble, such as when System 1 did 
not generate an answer, but System 2 required more time and resources. We can 
offer another illustrative example taken from a probability study by Kazak (2015). 
Consider a game in which two bags contain counters. One bag has three blue coun-
ters and one red counter. The other has one blue and three red counters. A player 
chooses one counter from each bag and wins if the colours match. Typically, the 
symmetry of the bags leads students to a swift judgement (System 1) to think the 

D. Pratt and S. Kazak



201

game is fair insofar as there appears to be an equal chance of winning. However, a 
careful calculation of the sample space (System 2) shows that the chances of win-
ning and losing are not equal.

It is worth noting that Fischbein (first in his seminal work of 1975 and then 
through many subsequent publications) developed a substantial account of the part 
played in probabilistic thinking by our primary (unschooled) and secondary (sys-
tematically trained) intuitions. The description of System 1 thinking seems to match 
rather well this account of primary and secondary intuitions.

It is interesting to note that Babai, Brecher, Stavy, and Tirosh (2006), studying 
probabilistic reasoning, reported results that could be interpreted as supporting the 
operation of System 1 and System 2 in that reasoning. They studied the responses 
and response times of 68 16- and 17-year-old Israeli students to 20 ‘congruent’ test 
items where the solution was expected to be in line with an intuitive response and 
20 ‘incongruent’ items in which the solution was regarded as counter-intuitive. 
They found not only that accurate responses were more prevalent amongst congru-
ent items but also that correct responses to congruent items were quicker than cor-
rect responses to incongruent items. This finding is consistent with System 1 finding 
immediate solutions to the congruent items but System 2 needing to find a more 
effortful solution to the incongruent items.

System 1 cannot be switched off (Stanovich & West, 2000), so training System 2 
to be less accepting of System 1 when System 1 readily finds a solution may become 
the focus for educationists. In Fischbein’s terms, this could be one focus for promot-
ing secondary intuitions. This is especially important for teachers and researchers of 
probabilistic thinking, identified by Kahneman as a conceptual field where System 
1 often uses non-stochastic intuitions to respond to uncertainty.

At one level, we might recognise here Gigerenzer’s portrayal of an evolved sys-
tem that allows the heuristics (of System 1) to operate much of the time, perhaps 
forgoing accuracy (of System 2), for the benefit of speed (of System 1). Kahneman 
identifies a rich host of mechanisms that System 1 uses in order to reach quick 
answers to questions. For example, he claims that one technique is to substitute an 
easier question than the one actually posed. According to Kahneman, substitution is 
in fact a particularly prevalent cause of heuristic errors in the field of probability and 
statistics. For example, System 1 cannot correlate information about baseline fre-
quencies alongside intuitions about resemblance, and so the representativeness heu-
ristic tends to determine the decision. According to Kahneman, faced with a question 
about likelihood, System 1 substitutes a simpler question about resemblance. 
Another example is apparent when System 1 substitutes a question about the fre-
quency of an event with a question about how easily similar instances come to mind, 
with the consequence that the availability heuristic tends to determine the answer.

Chernoff (2012) demonstrated the use of attribution substitution in probabilistic 
reasoning amongst 59 pre-service elementary and middle school teachers. In an 
unusual variation on the tasks typically used to test for representativeness, the sub-
jects were asked which of the two answer keys (A C C B D C A A D B or C C C B 
B B B B B B) was least likely to be the answer key for a ten-question multiple 
choice math quiz, each question having four possible responses. They were also 
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asked for an explanation. (An answer key is the coded list of correct responses.) 
Chernoff concluded that certain individuals, when presented with one question, pos-
sibly unknowingly answered a different question, substituting a variety of heuristic 
attributes, such as ‘most resembling’ in place of ‘most likely’.

In contrast to Gigerenzer’s emphasis on the rationality of people’s use of heuris-
tics, Kahneman’s focus remains on how people’s reliance on System 1 leads to 
systematic errors.

6.2.5  Implications of System 1 and System 2 for Probabilistic 
Thinking

One of System 1’s techniques for making quick decisions is to readily draw causal 
inferences from the evidence immediately available. When presented with data, 
System 1 will begin to observe patterns and form impressions as possible causal 
explanations. System 2 typically accepts these explanations. This accounts for how 
we mistakenly see patterns in random behaviour, design in arbitrary events and 
intention in the accidental. According to Kahneman, this technique of System 1 
explains why people, when presented with randomly generated data, use heuristics 
to predict how the sequence will extend. This attribute of System 1 also provides an 
account of why people confuse association with causation, attributing causality to 
patterns in data that might have no causal connection in reality:

People are prone to apply causal thinking inappropriately to situations that require statisti-
cal reasoning. Statistical thinking derives conclusions about individual cases from proper-
ties of categories and ensembles. Unfortunately, System 1 does not have the capability for 
this mode of reasoning; System 2 can learn to think statistically, but few people receive the 
necessary training. (Kahneman, 2011a, p. 77)

In the Diaz and Batanero (2009) study, participants often confused causality and 
conditionality, and they typically assumed that the likelihood of an event could not 
be affected by the likelihood of an event that has already happened. These errors 
were resistant to improvement through their teaching methods. Perhaps because 
System 1 searches for causations, there is a tendency to account for conditional 
relationships as if they were causal with time dependence.

The difficulty people have in recognising a situation as amenable to a statistical 
interpretation has been well documented. Konold (1989) referred to people’s tendency 
to focus on what happened, rather than on strategic probabilistic approaches, as the 
‘outcome’ approach. Thus, focussing on outcomes, System 1 might easily infer causa-
tions even when the patterns noticed are explained merely by the vagaries of chance.

Lecoutre, Rovira, Lecoutre, and Poitevineau (2006) investigated how 20 grade 3 
pupils, 20 psychology researchers and 20 mathematics researchers, all based in 
Rouen in France, decided on whether given situations might involve randomness. 
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Sixteen items were presented on cards and varied according to whether: (1) the 
items were events from everyday life experiences or a repeatable process that might 
involve random variation; (2) the items addressed the subject as ‘you’ or not; (3) the 
possible outcomes were equally likely or asymmetric. First, the subjects were asked 
to categorise the 16 items for themselves, and then they were asked which items 
involved randomness. The researchers concluded that subject-decided randomness 
was involved when they could recognise probabilistic reasoning, for example, by 
being able to compute a probability, making probability rather than randomness the 
foundational idea. Subject-decided randomness was not involved when they thought 
determinism played the larger part or when causal factors could be identified. Since 
System 1, according to Kahneman, is constantly searching for causal patterns, it is 
perhaps not surprising that the possibilities for a stochastic approach tend to be 
ignored and people demonstrate the outcome approach.

Smith and Hjalmarson (2013) examined 32 pre-service mathematics teachers’ 
conceptions of random processes with respect to the traditional game of ‘rock, 
paper, scissors’. Teachers found it difficult to reconcile equality of winning out-
comes for each player with the human interference apparent when choosing how to 
place their fingers in the game. System 1 all too easily recognises the human ele-
ment as a causation, but this conflicts with notions of fairness, often associated with 
randomness (Paparistodemou, 2014; Paparistodemou, Noss, & Pratt, 2008; Pratt, 
2000). The pre-service teachers did ultimately decide that the outcomes were not 
generated randomly. The researchers concluded that understanding of the nature of 
randomness developed during their instructional sequence as a result of making the 
generating process explicit and focussing on whether that constituted random gen-
eration or not.

In their early work, Kahneman and Tversky introduced the so-called law of 
small numbers to describe how people behave as if the law of large numbers 
applies to short sequences as well. There is a tendency to underestimate the need 
for samples with large numbers in order to draw reliable inferences. Kahneman 
now explains this in terms of System 1. When samples are small, apparent patterns 
can be identified simply because extreme results are more likely to happen than if 
the sample were large, and System 1 tends to attribute causal explanations to those 
patterns.

More broadly, Kahneman argues that we easily think associatively, metaphori-
cally and causally and these styles of thinking are more suited to System 1 than is 
statistical thinking. It remains an open question as to whether educationists will be 
able to find ways of training or educating their students such that System 2 would 
be less accepting of System 1 answers in identifiable scenarios. There is some evi-
dence, presented below, to suggest that this may be possible. At the point that 
System 2 is required to affirm System 1’s answer, it might be possible to teach 
System 2 to be less easily convinced in certain scenarios that capture typical proba-
bilistic and statistical situations.
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6.2.6  Intervention Studies on Heuristics and Biases

Below, we focus on intervention studies, which may suggest pedagogic methods to 
address the difficulties that seem to be generated through System 1 thinking.

Fast (2007) conducted a study of 54 female Zimbabwean students. A test, consist-
ing of questions of the sort used by previous researchers to identify misconceptions, 
was administered. The students were found to make errors in their responses that were 
consistent with representativeness, availability and other heuristics. Source analogues 
were constructed and offered to the students through interviews. These analogues 
were designed to be structurally similar to the initial test items but were intended to 
generate normative responses and so be the basis of knowledge reconstruction, which 
was evaluated as generally successful. For example, a source analogue might pose a 
similar problem to that posed by the original test item but with the situation amended 
so that the numbers were more extreme. Thus, in the original test, subjects were asked 
whether a sports team, thought to be better performer, would be more likely to win 
against a supposedly inferior team in a playoff based on five matches or nine matches. 
In contrast, the analogue question compared a single playoff match with a five-game 
playoff. The intention was that subjects would be able to use common sense to find 
the correct response to the analogue question and then recognise its structural similar-
ity with the original test item. A delayed post-test suggested that the analogues con-
tinued to provide anchors for normative thinking 1  month later. The process of 
knowledge reconstruction was seen as critical. Even though this research was based 
on a fairly small and specific group, the above intervention raises the question whether, 
in Kahneman’s terminology, the use of analogues might offer a bridge towards nor-
mative thinking by sensitising System 2 to a set of scenarios in which System 1’s 
automatic and quick response might otherwise be problematic.

Another approach has been demonstrated over several years, in the work of Pratt 
(2000) and Pratt and Noss (2002, 2010), where the intervention was based around 
children mending computer-based ‘gadgets’, virtual simulations of everyday ran-
dom generators, whose configuration could be edited to make them work properly. 
These 10- to 11-year-old children tended not to recognise that attributes of random-
ness in the short term (e.g. unpredictability, lack of control over the outcomes, irreg-
ularity in results) differed from attributes of randomness in the long term, at least 
from the aggregated perspective (where relative frequencies become predictable 
and aggregated results have a regularity to them). From the Kahneman perspective, 
these children’s System 1 heuristic thinking appeared to suggest that, when chance 
was operating, it was just a matter of luck. By working with the gadgets, the chil-
dren gradually became aware of patterns in the aggregated view over the long term. 
Pratt and Noss (2010) concluded that the key elements in the intervention design 
were (1) enabling the testing by children of their personal conjectures, (2) seeking 
to enhance the explanatory power of knowledge that might offer a route to nor-
malised knowledge, (3) constructing a task design that would be seen by the 
children as purposeful and allow them to appreciate the power of the mathematical 
idea of distribution and (4) designing a representation of distribution that could 
be initially used as a control point by the children and subsequently become a  
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representation with predictive power. These design constructs perhaps offer some 
further insight into what might be needed in order to sensitise System 2 to the need 
to distinguish between scenarios with small and those with large numbers.

Paparistodemou et al. (2008) also used a computer-based microworld to study 
twenty-three 5- to 8-year-old children’s ideas about fairness. The children were 
challenged to build a lottery machine by arranging a spatial configuration of red and 
blue balls, of which a small white ball would bounce. When the white ball hit a red 
ball, a character called the ‘space kid’ moved in one direction, and when a blue ball 
was hit, the space kid moved in the opposite direction. The aim was to keep the 
space kid near to his starting position. Some of the children’s configurations 
exploited symmetry so that in effect the white ball bounced in turns from red to blue 
and back to red. Others exploited random bouncing so that it was impossible to 
predict which colour would be hit next. These two approaches were associated with 
deterministic and stochastic strategies, respectively. By placing emphasis on fair-
ness in an expressive environment, the children were able to imagine fairness not 
only in terms of turn taking but also in terms of the vagaries of chance. The design 
constructs listed above (Pratt & Noss, 2010) seem to apply to this study as well, 
especially with respect to 1, 2 and 3. Kahneman might argue that the approach used 
in the Paparistodemou et al. (2008) provides System 2 with new possibilities for 
how fairness, when detected by System 1, might be interpreted.

An intervention by Canada (2006) might be seen as analogous to that by 
Paparistodemou et al. but with respect to variation in probability situations. Canada’s 
use of hands-on activities, supplemented by small-group and whole-class discus-
sion of variation, with pre-service teachers may enhance their appreciation of how 
variation plays a role in statistical thinking.

Another approach that might enhance students’ System 2 recognition of the pos-
sible weakness in System 1’s proposed solution is to improve teachers’ pedagogical 
knowledge of the types of reasoning students might use. Such a development might 
alert teachers to the need to artificially engage their students’ System 2 thinking, 
with the aspiration that, after sufficient training, their students might begin to recog-
nise such situations for themselves. There appears at least to be a deficit in teachers’ 
knowledge about students’ probabilistic reasoning. In an interesting study, Watson 
and Callingham (2013) examined the probabilistic reasoning of 247 students, 
mostly from years 7 to 11, and compared that to how their 26 teachers recognised 
their students’ reasoning. Some of the students’ reasoning was unfamiliar to the 
teachers suggesting that there might be value in finding ways of enhancing the 
teachers’ pedagogical knowledge in this area.

6.2.7  Discussion

In this section, we have considered a key issue that has emerged in research on heu-
ristics for making judgements of chance because of Kahneman’s (2011a) recent 
publication on two reasoning systems. Our perspective is that this issue is very 
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important for researchers in statistics education, who are interested in randomness 
and probabilistic thinking, because dual process theory allows us to interpret 
research in the field in new ways.

The debate between Kahneman and Gigerenzer continues. In Thinking, Fast and 
Slow, there are several references by Kahneman to Gigerenzer’s criticisms. In fact, 
Kahneman takes the opportunity to criticise Gigerenzer’s notion of fast and frugal 
heuristics on the basis that, in Kahneman’s view, there is no imperative for the brain 
with its massive processing power to be frugal. Meanwhile, Gigerenzer (2012) has 
described how methods of making rational choices are inefficient when key factors 
influencing the decision are unknown. For more recent developments in this ongo-
ing debate, see Kahneman (2011b) and Gigerenzer (2014), where there is a chapter 
on revolutionising schools through a risk-based curriculum. This emphasis on a 
risk-based curriculum is in line with Fischbein and other researchers who have 
argued for many years that the curriculum is predominately anchored in determinis-
tic reasoning (deduction, proof, algorithms) and has historically ignored stochastic 
reasoning under uncertainty (statistical thinking).

Overall, we have summarised Kahneman’s application of dual process theory to 
his research, and we have reinterpreted recent research in those terms as a means to 
offer insight into its implications. Nevertheless, we acknowledge that it is perhaps 
too early to offer a critical evaluation of the realignment of the heuristics research as 
proposed by Kahneman beyond the discussion above about implications. In subse-
quent sections, we address other issues which we see as recent key developments in 
research on probabilistic thinking, and although the emphasis will move away from 
Kahneman’s Thinking, Fast and Slow, we invite the reader to attempt to interpret 
this research from that perspective, which might indeed yield further insights.

6.3  Conceptual and Experiential Engagement 
with Uncertainty

6.3.1  Introduction

Probability is a means to quantify uncertainty in random processes. Understanding 
how the concept of probability historically developed provides a perspective for 
interpreting current research results on students’ conceptions of probability. One 
important aspect of probability that appeared in the mid-1600s is its duality 
(Hacking, 1975; Weisburg, 2014). The dual notion of probability implies that on the 
one hand probability is considered as degree of belief (subjective notion), and on the 
other hand it refers to stable frequencies in the long run (objective notion). Another 
approach to estimating probability, especially in games of chance, involves a priori 
method that requires an assumption of equiprobability.

Accordingly, there are three main schools of thought in probability theory that 
have different conceptions/interpretations of probability. From the classical view, 
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the probability of an event is a ratio of the number of favoured outcomes to the total 
number of equally likely outcomes. In the frequentist view, the probability of an 
event is defined as the limit of the relative frequency of the observed outcomes as 
the number of trials increases indefinitely when a random experiment is repeated 
under identical conditions. The subjective interpretation of probability emphasises 
personal probability relative to our background knowledge and beliefs.

The ongoing historical debates about different interpretations of probability have 
been also reflected in school curricula and in teaching of probability, such as theo-
retical, empirical and subjective probabilities (see Jones et al., 2007). While existing 
research on heuristics revealed the inconsistencies between students’ informal con-
ceptions of probability and formal theory of probability (see earlier section on heu-
ristic thinking), many recent research studies investigated how students’ probabilistic 
conceptions developed and the ways to support them. In this section we focus on 
this body of research. The first part focusses on research that is primarily about 
students’ understanding, though we suggest implications for teaching. Subsequent 
parts consider how such understandings might be influenced by teachers, through 
the tasks they choose, their pedagogic approaches and the tools they offer to their 
students.

6.3.2  Recent Research on Conceptual Development

Given the historical development of various meanings of probability, the concept of 
probability has a slippery aspect. Furthermore, the seminal works by Piaget and 
Inhelder (1951) and Fischbein (1975) offered a starting point for much research, 
reviewed in detail elsewhere (Borovcnik & Peard, 1996; Shaughnessy, 1992), that 
showed how the learning of probability is troublesome. More recently, several 
researchers have been particularly interested in the development of these concep-
tions from a variety of theoretical perspectives. Below we first summarise that work, 
and then, in the final subsection, we draw together the implications for teaching.

Kafoussi’s (2004) study focussed on the early development of quantitative rea-
soning about the likelihood of chance events during a classroom teaching experi-
ment in a kindergarten. Individual interviews with children were conducted before 
and after the teaching experiment. Responses of the 5-year-old children during the 
pre-interviews tended to rely on subjective beliefs when judging the likelihood of 
given events. While children were able to identify all possible outcomes of a single- 
stage chance experiment, they could not give a complete answer for a two-stage 
experiment. They also seemed to have difficulties in comparing the likelihood of 
events when the task involved comparing of numbers of objects in a box rather than 
sizes of sections on a spinner. The post-interview results suggested considerable 
progress in children’s probabilistic thinking showing a shift from subjective concep-
tions to a ‘naive quantitative reasoning’ as in Jones, Langrall, Thornton and Mogill’s 
framework (Jones, Langrall, Thornton, & Mogill, 1997, p. 121). Kafoussi argued 
that 5-year-olds’ conceptual development was fostered during the teaching experi-
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ment as they began to (1) discuss what counted as ‘different’ outcomes in a two- 
stage experiment, (2) consider the empirical results from an experiment as a solution 
to a probability problem and (3) predict the results of a probability situation with 
equiprobable outcomes without conducting an actual experiment.

Prediger (2008) reported on a clinical interview study with ten pairs of 
10–11-year-old children by focussing on their individual conceptions of chance 
situations in a game context before any probability instruction at school. Prediger 
found three categories of conceptions when children were explaining or justifying 
the outcomes or their predictions: everyday conceptions, empirical conceptions and 
theoretical conceptions. She was cautious about simply making a correspondence 
between these individual conceptions and three interpretations of probability (sub-
jective, frequentist and classical). She suggested that some of these student concep-
tions could later be developed into a subjective conception of probability or a 
frequentist conception. However, one pair of students seemed to develop a notion of 
a classical interpretation of probability when talking about the number of different 
ways to find the sum of two die. Apart from this one example where the students had 
a learning trajectory progressing from everyday conceptions to the classical concep-
tion of probability, the other pairs seemed to move back and forth between different 
conceptions.

Prediger however did not treat the individual conceptions that were not theoreti-
cally sound as misconceptions in a traditional sense (i.e. (mis)conceptions to be 
substituted by the mathematically appropriate ones). Using the approach of horizon-
tal development in the conceptual change research tradition, she considered stu-
dents’ everyday conceptions ‘as concurrent conceptions which co-exist with newly 
developed mathematical conceptions even in the long run’ (Prediger, 2008, p. 142). 
Similar to previous findings (Konold, Pollatsek, Well, Lohmeier, & Lipson, 1993; 
Pratt & Noss, 2002), the students’ fluctuations between different conceptions during 
the task suggested that an individual might hold a range of views (from informal to 
formal) at the same time and use different ones depending on how they perceived the 
stochastic situation or what they paid attention to (single outcome vs. long run or 
short-term vs. long-term contexts). The horizontal view suggested a complementary 
perspective to the vertical view of conceptual change focussing on transformation of 
misconceptions to mathematical conceptions. Adopting this approach to conceptual 
development in probability seemed to provide a valuable perspective on ‘typical’ 
persevering misconceptions and how to reconceptualise them to help learners.

Furthermore, Schnell and Prediger (2012) applied the vertical and horizontal 
conceptual change approach to the development of students’ conceptions of the 
empirical law of large numbers. However, their main focus in this paper was on the 
theoretical contribution of their fine-grained method for analysing the micropro-
cesses of constructing conceptions by using a notion of ‘construct’ as the unit of 
analysis and of building links amongst them as a webbing of constructs. By micro-
processes, they referred to moving from an initial construct to an advanced one or 
changing the function of a construct as new relations between constructs were 
formed. Schnell and Prediger argued these microprocesses would contribute to the 
vertical and horizontal conceptual changes, suggesting the possibility of a  successful 
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trajectory from a ‘haphazard’ view of changes in the chance outcomes to a stabi-
lised view of patterns in the long-term context.

As shown in previous research on heuristics, students often come to classrooms 
with alternative conceptions of probability. Teachers need to be aware of these dif-
ferent interpretations of probability for helping learners develop the formal ideas. 
From this perspective, the study of Liu and Thompson (2007), focussing on teach-
ers’ understandings of probability on various tasks, is of importance. Research was 
conducted with eight high school teachers participating in an 8-week seminar on 
teaching and learning of probability and statistics with deeper understanding from a 
constructivist perspective. Liu and Thompson focussed on teachers’ ‘stochastic 
conception of probability’ which they aligned to the frequentist view; in contrast, 
they argued that a ‘relative proportion conception of probability’ can sometimes be 
drawn upon without consideration of a repeatable stochastic process. Some other 
non-stochastic interpretations of probability, observed in teachers’ responses and 
discussions, seemed to resemble those that students often have, for example, (1) the 
outcome approach (Konold, 1989), (2) reduction of sample space for a probabilistic 
event (i.e. given that either an event will happen or it will not happen, the probability 
is either 1 or 0) and (3) the principle of indifference approach to probability (i.e. the 
probability is 50% because an event may happen or not). Liu and Thompson argued 
that these non-stochastic interpretations would actually depend on how people con-
ceived the given situation.

6.3.3  The Impact of Task Design on Conceptual 
Understanding of Probability

Conceptual development of probabilistic ideas is, of course, shaped by experience. 
For example, according to Ainley, Pratt, and Hansen (2006), students’ conceptual 
understanding of the utility of a probabilistic idea is connected with their sense of 
the purposefulness of the task in which they are engaged. In pedagogic situations, 
tasks set by the teacher can sometimes seem artificial, lacking purpose or relevance 
from the perspective of the student, perhaps because the teacher is very aware of 
their responsibility to teach the syllabus. The challenge, and it is recognised as non- 
trivial, is to create tasks that are seen as purposeful by the student but result in the 
student gaining appreciation of how the statistical idea is powerful in helping them 
to complete the task.

An example lies in Pratt’s (2000) study of children configuring computer simula-
tions of random generators such as coins, spinners and dice, referred to as gadgets. 
The children found the task of trying to make the gadgets work properly purposeful, 
and it led inexorably to them gaining a sense of how a probability distribution, con-
textualised in this study as the working box of the gadget, had the power to predict 
aggregated outcomes in the long term but not in the short term. More generally, 
Ainley et al. suggested a range of heuristics for designing tasks that are likely to 
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connect purpose and utility; tasks might (1) have an explicit end product, (2) involve 
making something for another audience to use and (3) contain opportunities for 
pupils to make meaningful decisions.

6.3.4  Scaffolding and Dialogic Thinking

As seen in the previous sections, misconceptions or biases that hinder students’ 
probabilistic thinking are well documented. There are a few research studies exam-
ining how the pedagogic approach of the teacher might facilitate learning of 
probability.

Corter and Zahner (2007) initially worked with 26 graduate students in an intro-
ductory statistics course to examine the use of external visual representations in 
probability problem-solving. Each participant was asked to solve eight probability 
problems using a structured interview protocol. This exploratory study indicated 
that students used a variety of visual representations and that the appropriate ones 
tended to facilitate students’ problem-solving. Zahner and Corter (2010) further 
researched the role of the external visual representations on solving probability 
problems (such as what kinds of representations were used for different problems, 
how and when) with another 34 graduate students. The interview-based research 
suggested that certain representations used spontaneously by the students helped 
them perform better in solving particular problems compared to those not using any. 
Selecting and using appropriate external representations in presented problems 
seemed to be an important part of the problem-solving process in this study.

Ruthven and Hofmann (2013) described the development of a probability mod-
ule for early secondary school using classroom-based design research. A distinctive 
feature of this module was its pedagogical approach that was based on prior research 
on effective ways of teaching mathematics and science, especially in the UK con-
text. This pedagogical intervention involved a teaching approach where students 
were encouraged to express their ideas, give explicit reasons for their thinking and 
take different perspectives, an approach termed ‘dialogic’ (see Mercer & Sams, 
2006). Dialogic talk used in small group work and whole class discussions during 
the activities became a tool that helped students move from their informal ideas 
about probability, including some of those heuristics and biases mentioned above 
(mainly used in System 1 thinking mode) to formal probabilistic reasoning (i.e. 
System 2). Further evidence from Kazak, Wegerif, and Fujita (2015a), working with 
groups of 10–12-year-old children, supported the idea that scaffolding for dialogue 
as well as for content, alongside the use of technological tools, helped to generate 
breakthroughs in probabilistic thinking.

Kazak, Wegerif, and Fujita (2015b) explored whether an analysis of two 12-year- 
old students’ activity based on dialogic theory might offer new insights compared to 
a Piagetian or Vygotskian analysis. The students were exploring the fairness of a 
variety of chance games, which they played manually but also built in TinkerPlots 
2.0 software (Konold & Miller, 2011, http://www.tinkerplots.com/). The  researchers 
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found that the Piagetian and Vygotskian analyses ignored what for most viewers of 
the activity was a very obvious phenomenon. The recordings of the activity showed 
how the students engaged in laughter, sometimes quite raucous, a phenomenon 
ignored by Piaget and Vygotsky, but of great interest to Bakhtin, whose work 
inspired the dialogic approach (Bakhtin, 1986). According to the authors, laughter 
creates space and openness for participants to switch perspective and so to take the 
point of view of the other. More generally, they argued that switching perspective 
was facilitated by the good relationship between the participants, including the 
teacher, good humour being one indicator of such a relationship.

6.3.5  The Role of Technology

In considering how teachers might influence students’ understanding, we have so 
far considered recent research on task design, scaffolding through external visuali-
sations and dialogic approaches. We now consider the tools, in particular techno-
logical tools, that they might offer their students. Research continues to suggest that 
certain types of technology, used within carefully designed situations, can offer 
opportunities for probabilistic learning that stretch beyond those available in every-
day experience. Biehler, Ben-Zvi, Bakker, and Makar (2013) provided a recent 
review on such possibilities at school level. That review emphasised in conclusion 
some recurrent important points in the design of the learning environment that 
incorporates the use of technology:

 1. Skill was needed, by the user or the teacher, to know when it was appropriate to 
adopt a hands-on approach and when software might help.

 2. One key feature of modern pedagogic statistical software lay in its dynamic, 
visual and personal nature.

 3. One key focus needed to be on reasoning with aggregates.
 4. The tension between adopting the power that technology offered and the time it 

took to learn and adapt to that technology needed to be addressed.

With our specific focus on probability, we elaborate below a few research-based 
studies which we believe add to the above list of specific proposals for the design of 
a probabilistic learning environment but which were not detailed in that broader 
review.

Earlier, we mentioned Pratt’s (2000) study in which 10- and 11-year-old children 
began to acknowledge that there were regularities in the aggregated results of ran-
dom processes even though the same could not be said in the short term. In the 
previous section on heuristics, we set out the design constructs that, according to 
Pratt and Noss (2010), supported the development of those insights. Apart from 
those aspects of the design, it is clear that the technological environment provided 
the opportunity to gather artificial experience of the long term because the technol-
ogy offered systematic feedback, quickly and repeatedly, which would not usually 
have been the case in everyday experience.
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Similar results have been reported by Lee and Lee (2009), when children cheered 
for a chosen colour to be the most frequent in repetitions of computer-simulated 
draws of marbles from a bag, only to find that the result was rather predictable, 
except in a short run. They concluded that, in similar conditions to those reported by 
Pratt and Noss, students began to notice variability in small samples and regularity 
in large samples. When it came to interpreting the impact of adding some new data 
in small samples (more change/instability) vs. in large samples (less change, more 
stability) in the computer simulation results, other semiotic tools, such as the use of 
metaphors in combination with technology (Abrahamson, Gutiérrez, & Baddorf, 
2012), helped students make sense of the visual phenomenon.

Ben-Zvi, Aridor, Makar, and Bakker (2012) studied how children aged 
10–11 years expressed uncertainty while they conducted informal investigations of 
data. The students used TinkerPlots 2.0 to make informal inferences on samples of 
data where the sample size was gradually increased. The students initially oscillated 
between deterministic and relativistic statements. Eventually, a basic probabilistic 
language began to emerge. The authors concluded that more sophisticated inference- 
making was encouraged by attending to students’ expressions of uncertainty when 
making judgements about trends in data.

Abrahamson, Berland, Shapiro, Unterman, and Wilensky (2006) proposed an 
additional role for the computer. The authors of the paper discovered conflicts in 
their interpretations of a computer simulation in which three boxes were randomly 
coloured green or blue. A single run resulted in any one of eight possible configura-
tions, called keys (e.g. green, green, blue is one key). The authors happily ran the 
simulation without disagreement. When the authors began to create probabilistic 
models of the situation, they discovered their apparent agreement was not founded 
on the same epistemological assumptions. It was possible to model either the length 
of a run of repeated guesses until a specific key appeared or the frequency of a par-
ticular key in various size samples of guesses. The authors found it difficult to agree 
on how the first model failed to generate the expected bell-shaped curve, a disagree-
ment that was only resolved when the authors had had the opportunity to programme 
the situations, were confident that the programme was bug-free and had corrected 
any errors in thinking through discussion. Programming on the computer was for 
them a necessary step to expose and critique underlying assumptions and models, 
differences, which had not been apparent from simply running a prepared simula-
tion. Chaput, Girard, and Henry (2008) made a similar point about modelling, which 
has some commonalities with programming insofar as both require the learner to 
express their ideas about what is being programmed or modelled. They argued that 
the use of modelling in statistics education is a delicate process because of the prob-
lematic epistemological basis of probability. They contended that the advantage of 
using computers resides not so much in their power and efficiency as in the analysis 
of random situations that needs to be done in order to design the model and translate 
that design into computer instructions.

In a sense, programming and discussion in Abrahamson’s reflective article above 
acted to bridge across the differing probabilistic assumptions that the authors had 
held. Abrahamson and Wilensky (2007) reported how the design of pedagogical 
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situations, including the use of technology, supported students to bridge intuitively, 
cognitively or historically conflicting ideas in probability. They referred to these 
conflicting ideas as being at opposite poles of a learning axis. They set out to design 
bridging tools that were intentionally ambiguous with respect to these extremes. 
These tools were presented as part of a broader learning environment, designed to 
stimulate engagement with and argumentation about the epistemological ambiguity. 
There is a connection here in how Abrahamson and Wilensky exploited ambiguity 
to set up cognitive conflict, subsequently resolved through discussion, and how 
Pratt and Noss (2010) referred to blurring control and representation in the way that 
the computer-based simulations were configured and used.

In summary, we might ask what have we learned about the role of technology in 
the teaching and learning of probability to add to the findings in the Biehler et al. 
review (2013). Certainly there is support (Lee & Lee, 2009; Pratt, 2000) for the idea 
that extended experience with the virtual, repeatable and artificial experience offered 
by some technological environments can contribute to a focus on aggregate thinking 
called for in that review, with the result that students can begin to distinguish 
between variability in the short term and regularity in the long term. In addition, 
there is growing evidence (Abrahamson et  al., 2006) that programming models 
might for some clarify epistemological distinctions in probability. Biehler et  al. 
highlighted the concern that in some situations teachers might judge that adopting 
technological approaches is more time-consuming than is warranted by the benefits 
that accrue and this could be a view taken by some teachers with respect to pro-
gramming. The development of bridging tools (Abrahamson & Wilensky, 2007) 
that have a degree of ambiguity with respect to contrasting epistemologies might 
offer a similar role to programming and be less time-consuming for the student.

6.3.6  Discussion

In the first section of this chapter, we summarised the research on heuristics and 
biases and reviewed recent developments in theory that linked that earlier work to 
System 1 and System 2 thinking. According to Kahneman’s account, System 1 
thinking is relatively automatic and is best controlled by careful training of System 
2. In the current section, we set out to review recent research to build on earlier 
reviews about how that might best be done.

What is clear from this review is the critical role played by teachers. Examples 
of this, cross referenced to the literature drawn on in this section, are:

 1. Offering more empirical hands-on experience of random variation (Biehler et al., 
2013)

 2. The artful selection of digital tools and other types of external representations 
(Pratt, 2000; Zahner and Corter, 2010; Lee & Lee, 2009, Biehler et al., 2013)

 3. Focussing such experience on prediction to tease out what counts as different 
outcomes (Kafoussi, 2004)
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 4. Recognising the complexity of different epistemologies of probability and help-
ing students to bridge the apparent discrepancies through programming or spe-
cially designed tools (Abrahamson et al., 2006; Abrahamson & Wilensky, 2007; 
Liu & Thompson, 2007; Prediger, 2008)

 5. Acknowledging the importance of task design, since the situation in which ran-
dom variation is met influences how people think about probability and because 
purposeful tasks can, if carefully designed, lead to a sense of the power of the 
probabilistic concepts (Ainley et al., 2006)

 6. Offering opportunities for students to express their ideas with their peers and 
through technology so that ideas can be negotiated and perhaps converge 
(Ruthven and Hofmann, 2013; Ben-Zvi, Aridor, Makar, and Bakker, 2012, Kazak 
et al., 2015a, 2015b)

Some of the above ways in which teachers might support learning of probability 
are especially suited to an approach in which probability is seen as a key part of 
creating or exploring models of situations that are amenable to a statistical interpre-
tation. Modelling is therefore the focus of the next section in this chapter.

6.4  Adopting a Modelling Perspective on Probability

6.4.1  Introduction

One of the striking developments in recent research on probability (and its connec-
tions to statistics more generally) is the increased emphasis on modelling. Models 
have always been a key element of statistics as a discipline in the way that they 
describe data probabilistically (e.g. in the form of probability distributions or ana-
lytical methods such as analysis of variance). According to Wild and Pfannkuch 
(1999), modelling is also an important component of statistical reasoning. The 
emergence of modelling in teaching and learning has no doubt been driven by the 
increasing access to technology and improved software, especially that aimed at 
learners. Modelling appears to have the potential to facilitate the methods by which 
teachers can support learners, as listed in the previous subsection. Indeed, model-
ling promises to offer a connection between data and probability (Konold & Kazak, 
2008) that is meaningful to learners and may provide an approach that enables 
learners to appreciate the power of probability, at a time when dice and card games 
have become less of a focus of play for the younger generation than in the past.

Modelling approaches tend to place emphasis simultaneously on data and uncer-
tainty. Models can be developed to fit real data, but the fit will not be exact, requir-
ing a probabilistic element to the model in order to account for the variation in the 
data. Computational models can be executed to generate virtual data, which may 
approximately reflect the real data if the model was a good one.

Theoretical distributions and sample spaces can be thought of as models, and so 
we begin this section by considering research in these areas. Subsequently, we 
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 consider research that addresses explicitly how a modelling perspective on proba-
bility might influence understanding (see Chap. 7).

6.4.2  Understanding Empirical and Theoretical Distributions

In their earlier review of student learning of probability, Jones et al. (2007) com-
mented that, in view of its importance in curricula, it was surprising that at that time 
there was little research on student conceptions of experimental probability. They 
did quote limited evidence about the difficulty students experience in making links 
between the sample space of a random generator and outcomes actually generated. 
They also noted the proclivity for students not to realise the connection with the use 
of large samples until they were able to spend extended periods working with simu-
lations that allowed the use of samples of any size.

There has since then been further research on students’ understanding of theo-
retical and empirical distributions.

Ireland and Watson (2009), researching 10–12-year-old students, concluded that 
it was insufficient for educators to focus on the calculation of theoretical probabili-
ties and the observation of experimental outcomes. According to their study, the 
connection between experimental and theoretical probability needed to be taught 
and experienced explicitly, by encouraging the creation of new correct probabilistic 
intuitions, the prediction of outcomes, the performance of experiments and the eval-
uation of outcomes as advocated by Fischbein (1975).

More recently, English and Watson (2016) conducted such a teaching experiment 
on 91 9- and 10-year-olds, who tossed one and two coins, and explored relative 
frequencies through graphing in TinkerPlots 2.0, which they also used to simulate 
large-scale tossing of coins. They concluded that working with the sampler in 
TinkerPlots 2.0 seemed to help students to recognise that the frequency of two heads 
and two tails approached 25% while the frequency of one head and one tail 
approached 50%. However, this experiment took place in only one school and on 
one school day.

It is commonly thought that students observe how data from an experiment con-
verges on the theoretical distribution. In fact, Lee, Angotti, and Tarr (2010), report-
ing on how 11–12-year-olds used a computer simulation to decide which of six 
companies were producing fair dice, concluded that it was not the cycling between 
model and data that was critical but developing well-connected conceptual links 
between model and data. Konold et al. (2011) suggested that constructing such a 
link was non-trivial for some students who appeared to lack a notion of a ‘true’ 
probability. Their subject appeared to distrust the idea that the theoretical probabil-
ity was in fact the true probability exactly because the theoretical probability almost 
always failed to predict exactly what happened when the experiment was repeated. 
Indeed, to them, it was the experimental probability that reported what really 
happened.
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A teaching episode reported by Noll and Shaughnessy (2012) focussed on sam-
ples and sampling distributions in probability tasks. In this episode students were 
engaged in making inferences about both known and unknown mixtures of coloured 
objects (i.e. estimating population proportions) based on empirical data obtained 
from repeated sampling. Researchers studied the impact of team teaching between 
the regular teachers and the investigators across six middle and high school class-
rooms. They concluded that teaching which focussed explicitly on distributions, 
especially sample-to-sample variability, enhanced students’ reasoning about empir-
ical sampling distributions.

6.4.3  Understanding Sample Space

Bryant and Nunes (2012) conducted a literature review for the Nuffield Foundation 
on children’s understanding of probability. They regarded working out the sample 
space as one of four key demands in learning about probability. Moreover, generat-
ing representations, such as tree diagrams, organised lists and dot plots, based on 
sample space outcomes can support drawing conclusions and provide evidence for 
predictions (Fielding-Wells, 2015; Kazak & Pratt, 2015). In their earlier review of 
student learning of probability, Jones et  al. (2007) also noted the importance of 
sample space, but they reported a range of difficulties in a concept that was not as 
straightforward as might be thought. They quoted research that identified difficul-
ties: (1) in identifying possible outcomes even in simple random experiments, (2) in 
systematically generating all outcomes and (3) through failing to consider the sam-
ple space when determining probabilities.

Nunes, Bryant, Evans, Gottardis, and Terlektsi (2014) reported on how to sup-
port generating and using the sample space in quantifying the probability of an 
event in primary grades. They claimed that the conceptual schemas, such as classi-
fication, logical multiplication and ratio, which children begin to develop earlier in 
other domains (i.e. subtraction), can be used in understanding sample space. Nunes 
et al. designed an intervention study to test their conjecture that sample space could 
be taught in primary school by building on children’s prior knowledge of these three 
concepts. In their study, one group of 10–11-year-olds participated in a teaching 
programme focussing on classification, logical multiplication and the use of ratios 
to quantify the probability of an event. Another group of participants (a comparison 
group) received instruction promoting mathematical problem-solving that was not 
related to sample space and probability. The third group (a waiting list control 
group) was taught by the class teacher and did not participate in a particular teach-
ing programme until after the study. The study showed that the children in the inter-
vention programme performed significantly better than their counterparts in both 
comparison groups. However, there was no significant difference between the 
problem- solving group and the unseen control group on any of the post-tests. 
According to Nunes et al., an instructional programme promoting the use of tree 
diagrams supported students’ development of combinatorial understanding. This in 
turn was needed to understand how to generate a sample space by building on the 
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concepts of classification and logical multiplication. After systematically identify-
ing all possible outcomes and classifying those into favourable and unfavourable 
cases in the sample space, students used the ratios to quantify the probability of an 
event. We note however that the suggested approach in this intervention study is 
only applicable to limited situations where the classical probability definition is 
used, where the sample space is discrete rather than continuous and where each pos-
sible outcome is equally likely.

The aggregation of cases (as favourable and unfavourable), mentioned by Nunes 
et al. (2014), is a crucial step in determining the probability of an event by using 
ratios. However, studies by Francisco and Maher (2005) and Nilsson (2007) indi-
cate that this idea was challenging to students in complex probability situations. For 
example, Francisco and Maher’s (2005) study showed that while students were able 
to list all possible outcomes in combinatorics problems, they had difficulties in 
identifying the sample space in a probability problem and, particularly, in determin-
ing the denominators of the probability ratio.

Nilsson (2007) focussed on the notion of sample space as a model for probability 
predictions in chance games. This study explored the strategies used by students 
(ages 12–13) when pairs were asked to distribute a set of markers on a game board 
numbered from 1 to 12 and to play the game against the other group by looking at 
the sum of two unusual dice. Students used the following pairs of designed dice in 
the game: (111222) and (111222), (222444) and (333555), (111122) and (111122) 
and (222244) and (333355), where, for example, (111222) represents a six-sided 
dice with three 1 s and three 2 s on its faces. In each of these four different game 
settings, an analysis of sample space for totals of two dice was required for making 
a decision about the distribution of markers on the game board. The study showed 
that students intuitively began to use what they considered as the sample space to 
decide the most/least likely totals in a given dice set-up. However, their focus was 
on the resulting sums by looking at only the proportions of numbers available on the 
individual dice rather than examining the number of different combinations to get 
each sum. Hence, their incomplete sample space provided a limited model for their 
decisions in different dice set-ups.

Abrahamson (2009a, 2009b) reported on the single case of Li, an 11-year-old 
student, using a specially designed scoop, which collected four marbles from a large 
pot, containing green and blue marbles in equal numbers. Any 1 scoop therefore 
contained 1 of 16 equally likely outcomes. First, Li was asked what would happen 
if the researcher were to scoop the marbles. Second, he was given card and crayons 
and asked to colour in all the different scoops. Third, Li was asked to create a com-
bination tower, in effect a histogram of the number of (say) green marbles in a 
scoop. These tasks lay a foundation for the binomial probability distribution, which 
is typically one of the first formal models used by statisticians and taught in an 
advanced statistics course at high school level and in an introductory statistics 
course at university level. For example, they are relevant to modelling one- 
dimensional random walk problems, especially for young students (e.g. Kazak, 2010), 
and the distribution of gender in 12-children families (e.g. Biehler, Frischemeier, & 
Podworny, 2015).
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In a detailed analysis of the clinical interview that took place around these three 
tasks, Abrahamson reported that Li’s initial perception of the likelihood of events 
such as two green and two blue marbles was undermined by the need to construct 
the various permutations in the second and third tasks. Li saw no reason not to con-
sider some of those permutations as redundant repeats. When the repeats were 
ignored, it seemed that there were five events (0, 1, 2, 3 and 4 blue marbles in a 
scoop) and there was no apparent reason for not thinking of these five as equally 
likely. According to Abrahamson, it was only when Li was able to make a ‘semiotic 
leap’ that he was able to use the tools to warrant his initial correct intuitive 
perceptions.

The use of such bridging tools might initially have been meaningless, but as the 
tools were well designed from a pedagogical and epistemological point of view, 
they led to semiotic leaps such as recognising why the events in the five-point sam-
ple space were not in fact equally likely. In the study reported by Pratt (2000), the 
students needed to realign fairness away from the totals of two dice to the individual 
combinations in what Abrahamson would have termed a semiotic leap.

Given the difficulties students often encounter in generating and using sample 
space in probability contexts, Chernoff and Zazkis (2011) suggested a new term, 
‘sample set’, as a bridging tool between student-generated lists of outcomes and the 
conventional sample space consisting of equiprobable outcomes. A sample set was 
used to refer to any set of all possible outcomes of an event. For example, in 
Abrahamson’s (2009a) four-marble task, {4 green and 0 blue, 3 green and 1 blue, 2 
green and 2 blue, 1 green and 3 blue, 0 green and 4 blue} would be a sample set 
listing all possible outcomes of the scoop experiment. Unlike some students’ think-
ing, this is not the sample space used in computing probabilities as ratios because 
the listed outcomes are not equiprobable. Consequently it leads to an incorrect 
answer as seen in Li’s case (Abrahamson, 2009a). Chernoff and Zazkis argued for a 
pedagogical approach that ‘without compromising mathematical rigour, acknowl-
edges the learner and serves as a bridge between personal, sometimes naive, and 
conventional knowledge’ (p. 19).

6.4.4  The Role of Modelling

For a typical statistician, a model can be imagined as a generator of data comprised 
of a main effect (signal) that explains much of the variation together with residual 
or unexplained variation, sometimes referred to as random error (Wild, 2006). With 
modern software, computational models can actually generate data, akin to the stat-
istician’s way of thinking about the model. In Sect. 6.3.1, we discussed the differing 
epistemologies of probability. Depending on the given situation, probability can be 
interpreted as a theoretical solution based on an equiprobable sample space, a rela-
tive frequency in the long run or a subjective degree of belief. Shaughnessy (1992) 
advocated a modelling perspective. As seen in several research studies in the Jones 
et  al. (2007) review chapter, probability can be viewed as a tool for modelling 

D. Pratt and S. Kazak



219

uncertain situations and making simulation-based inferences (Watson, Jones, and 
Pratt, 2013).

Although several studies below have demonstrated some promise as to how a 
modelling approach might support aggregate thinking, in relating to distribution and 
sample space, learning to model is non-trivial. Indeed, speaking about science, 
Lehrer and Schauble (2010) emphasised the difficulties faced by novices. In fact, 
Pfannkuch and Ziedins (2014) proposed that more emphasis be placed on helping 
students to appreciate the purpose of modelling. More specifically they suggested 
that models be categorised as ‘good’ or ‘bad’ or otherwise that no model currently 
exists. In that way, they suggested that students could engage in modelling activity 
either to use a good model, improve a bad model or create a model where one does 
not exist.

6.4.4.1  The Role of Modelling in Understanding Distribution

Modelling promises to offer some leverage in dealing with the issues raised above 
about the challenge of connecting sample space, theoretical and empirical distribu-
tion. Konold, Harradine, and Kazak (2007) used a data modelling approach in 
exploring middle school students’ understanding of distributions. The modelling 
activities in a series of tasks that focussed on a ‘data factory’ metaphor involved 
using TinkerPlots 2.0 modelling capabilities to create a distribution that would 
match the expected data in the real world, such as hair length of females and males. 
Using a similar approach, Lehrer, Kim, and Schauble (2007) examined fifth–sixth 
grade students’ use of TinkerPlots 2.0 tools to model a distribution of repeated mea-
surements of their teacher’s head. Student-generated models included an estimate 
value of the true length of the circumference using the median of the real measure-
ments and the combination of some random errors, such as reading error and ruler 
error. Comparing simulation results in TinkerPlots 2.0 with the actual data helped 
students revise their model. Both studies suggested these types of data modelling 
tasks with young students as a foundation for important ideas in statistical 
inference.

Prodromou and Pratt (2006, 2013) studied pairs of students aged between 14 and 
16 years as they worked with a specially designed microworld where the students 
controlled the throw of a basketball. Control was exerted through sliders, which 
controlled variables such as the angle of release. These variables worked either 
deterministically or stochastically by changing the parameter value and varying the 
spread around that value, thus introducing variation into the basketball throw. 
Within this setting, Prodromou and Pratt (2006) focussed on students’ development 
of two perspectives on data generated by the computer simulations, which were 
called modelling and data-centric perspectives. They distinguished the two perspec-
tives on distribution as they suggested different ways of perceiving variation. The 
researchers proposed that (1) the modelling perspective emerged when students 
manipulated the tools controlling the position and spread of the distribution and (2) 
the data-centric perspective was revealed when students focussed their attention on 
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variation and the shape of the emerging data. They also argued that being able to 
coordinate these two perspectives was essential in viewing data as a combination of 
signal and noise, which is a fundamental idea in statistical thinking (Konold & 
Pollatsek, 2002).

Drawing upon the coordination of two perspectives on distribution, Prodromou’s 
(2012) work with pre-service primary school teachers focussed on making connec-
tion between the empirical probability and the theoretical probability of the sum of 
two dice. The findings showed that pre-service teachers paid attention to the varia-
tion in the empirical data distribution (data-centric perspective on distribution) and 
the stability of the relative frequencies in the long run with a resemblance to the 
theoretical distribution (modelling perspective). A few of them also were able to 
make the connection from theoretical probabilities (modelling) to empirical proba-
bilities (data-centric) as a way to make predictions.

6.4.4.2  The Role of Modelling in Understanding Sample Spaces

Konold and Kazak (2008) highlighted the model fit idea to connect the empirical 
distribution and the expected (theoretical) distribution. Within this approach stu-
dents tried to make sense of observed data with regard to a model when making a 
prediction; they sometimes revised their model on the basis of data. Students 
tended to make their initial predictions based on their experiences or beliefs about 
the likelihood of random events, which were often in conflict with the accepted 
theory. Konold and Kazak argued that engaging students in developing the sample 
space in which the compound event occurred provided a theoretical model and 
facilitated their explanations for the distribution of actual and/or simulation data 
generated in TinkerPlots 2.0. They also suggested that by evaluating differences, or 
the fit, between the expected distribution based on the sample space and the distri-
butions obtained from the simulations, they began to perceive observed data as a 
noisy version of the theoretical expectation (the signal) in relation to the size of 
data collected. Hence, this model fit approach provided a context to focus students’ 
attention on sample space, which was often a challenging concept especially when 
students encountered compound events, as suggested by the studies mentioned in 
Sect. 6.4.3.

Most recently, the importance of the sample space analysis is also shown by the 
studies presented at the SRTL9, which investigated the role of building models in 
developing students’ informal inference skills in games of chance (Fielding-Wells, 
2015; Kazak & Pratt, 2015). In the context of a chance game seen on a popular 
television game show, Fielding-Wells (2015) discussed that structuring the sample 
space using a tree diagram provided a theoretical model and helped children (aged 
10–11) make informal inferences based on the fit between the model and the data 
from experiments with the game device. In the context of another chance game 
involving the sum of two dice, Kazak and Pratt (2015) working with pre-service 
middle school mathematics teachers also reported on a case in which the probability 
model based on sample space emerged from engaging in both the combinatorial 
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analysis of possible outcomes and empirical data both from playing the game physi-
cally and from simulations in TinkerPlots 2.0.

6.4.5  Discussion

Our review of research in this section suggests modelling as an emerging perspec-
tive for engaging students in probability contexts. This area of research is relatively 
new and still exploratory in the sense that conjectures are still being formed about 
how to support students’ understanding of probability and ideas using a modelling 
approach.

As seen in the studies above, one advantage of the modelling perspective is that 
it brings statistical and probabilistic ideas together. These examples generally 
involve focussing on the match between the data generated empirically and the 
expected distribution based on sample space. In several of these studies, the role of 
technology is also worth noting in facilitating even very young students’ under-
standing of probability. In addition, the modelling perspective appears to be relevant 
to promoting informal and formal statistical inference, which is addressed in Chap. 
8 of this handbook, while students are expected to draw data-based conclusions. 
Research specifically on modelling is reported in Chap. 7.

6.5  Conclusion

In this final section, we summarise in broad terms each of the three central themes. 
For more detailed findings of our analysis, please refer to the discussions in each of 
the three main sections. In addition to this broad summary, we consider gaps in the 
research and future directions.

This chapter has focussed on research into how students learn to address uncer-
tainty and how teachers support them in that process. The focus has been on that 
type of uncertainty that is more or less quantifiable. That is to say, we have not dis-
cussed research on somewhat less tangible aspects of uncertainty, such as the ‘black 
swans’ (Taleb, 2010), totally unpredictable events that can have dire consequences. 
While these other types of uncertainty are socially very important and interesting, 
the statistics educator is particularly concerned about situations that might incorpo-
rate randomness, quantified through probability. To this end, we have focussed here 
primarily on recent research, which we have contextualised within previous reviews 
of related research.

In the first section of this chapter, we discussed how the research on heuristics 
and biases has been represented as underpinned by dual process theory, potentially 
offering new insights into the many difficulties teachers and researchers have 
unearthed over the years regarding understanding probability. In particular, the new 
theoretical basis for the research on heuristics may point to innovative pedagogies 
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to support the triggering of System 2 thinking when making judgements under 
uncertainty. We discussed some of the more promising research in this area. There 
needs to be further research to identify how, in Kahneman’s terminology, System 2 
might be better trained to recognise scenarios in which System 1’s solution is likely 
to be biased. In Gigerenzer’s terminology, research is needed to identify pedagogic 
approaches that lead to more accurate fast and frugal heuristics. The important theo-
retical distinction here is that Kahneman’s ideas hold out little hope for improve-
ment in System 1 but rather in identifying how better to use System 2, whereas 
Gigerenzer would focus on researching better heuristics.

In the second section, we elaborated further by considering the impact of how 
tasks are designed, how technology is adopted and more generally how students are 
taught on the development of probability as a concept. This research presents the 
clear conclusion that teachers are central if students are to develop the slow thinking 
of System 2 to manage in a more sophisticated way the quick intuitions of System 1.

The second section summarised how, post Jones et al. (2007), there has been an 
increasing number of research studies focussing on students’ understanding of the 
relationship between experimental and theoretical probabilities with the availability 
of new technology tools. However, there is still a scarcity of research when the 
sample space is continuous and also in the area of subjective probability at the 
school level. We found no research on Bayesian methods at this level (see Chap. 13 
for more on Bayesian methods). Pedagogical approaches, including task design, to 
bridging the three dominant interpretations of probability need to be developed and 
tested in classroom settings. The second section ends by summarising what appear 
to be key aspects of how teachers might have a positive effect. Further research on 
task, tool and activity setting design is needed to identify how best to offer hands-on 
purposeful experience that promotes discussion and prediction and bridges different 
epistemological perspectives.

The third section points out that, perhaps driven by advances in the use of tech-
nology and in software development for educational purposes, probability can be 
presented as a mathematical model of (quantifiable) uncertainty. Indeed, such soft-
ware allows the student to express their understanding of chance in the form of 
computational probabilistic models that can be executed. A modelling perspective 
on probability seems to offer a bridge that might help learners to coordinate the 
potentially confusing classicist, frequentist and subjectivist epistemologies of 
probability.

At the very least, when students create such models, they engage in activity that 
crosses any artificial boundaries that may otherwise have been set up between prob-
ability and statistics. Curricula have for many years tended to separate probability 
from statistics. Such a separation might render probability somewhat meaningless 
as students struggle to recognise any utility for the topic. Modelling approaches can 
counter that danger. As well as the examples described in the third section above, 
there are many others scattered in the book as a whole (e.g. see Chap. 8 on informal 
statistical inference). Nevertheless, a modelling approach brings with it some new 
difficulties, touched on in the third section.
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Most educational research on modelling in this field is recent because modern 
technological tools have opened up new possibilities; perhaps as a result, the prom-
ise that modelling offers to help learners link probability and statistics remains open 
to further exploration. There needs to be more exploratory research that clarifies 
how pedagogic approaches might exploit the potential of modelling for probabilis-
tic learning while providing pathways through the obstacles for learners that no 
doubt will become more evident. One challenge is how to design tasks that make 
modelling seem purposeful to learners so that they can begin to engage with its util-
ity or power. Another challenge is how to provide guidance on what makes a model 
effective. At the same time, there is still need for investigating the role of other 
visualisation tools (physical materials, diagrams and so on) and teacher scaffolding 
in promoting the modelling approach especially during off-computer tasks.

Although such research would be exploratory, there may be other research 
opportunities, which can test verifiable conjectures. Bryant and Nunes (2012) argue 
that much of the research on children’s understanding of probability is based on 
good ideas but that its design is limited. They call for many more cross-sectional 
and longitudinal studies as well as intervention projects that test causal hypotheses 
about the factors involved in children’s learning of probability. Testing causal 
hypotheses is difficult in educational research because there is an ethical dimension 
that resists the construction of randomised controlled trials. Nevertheless, there are 
now some examples of where this has been possible, and Bryant and Nunes call for 
more. The field is now relatively mature, and this review alongside earlier ones may 
help to identify opportunities for this type of systematic research that tests well- 
formulated hypotheses. Of course, there continues to be a need for exploratory stud-
ies in less well-developed topics, such as in the area of modelling, where clear and 
testable hypotheses are not yet available.
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Chapter 7
Introducing Children to Modeling Variability

Richard Lehrer and Lyn English

Abstract This chapter synthesizes diverse research investigating the potential of 
inducting elementary grade children into the statistical practice of modeling vari-
ability in light of uncertainty. In doing so, we take a genetic perspective toward the 
development of knowledge, attempting to locate productive seeds of understandings 
of variability that can be cultivated during instruction in ways that expand students’ 
grasp of different aspects and sources of variability. To balance the complexity and 
tractability of this enterprise, we focus on a framework we refer to as data modeling. 
This framework suggests the inadvisability of piecewise approaches focusing nar-
rowly on, for instance, computation of statistics, in favor of more systematic and 
cohesive involvement of children in practices of inquiring, visualizing, and measur-
ing variability in service of informal inference. Modeling variability paves the way 
for children in the upper elementary grades to make informal inferences in light of 
probability structures. All of these practices can be elaborated and even transformed 
with new generations of digital technologies.
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7.1  Introduction

This chapter synthesizes diverse research to investigate the potential of initiating 
elementary grade children into the statistical practice of modeling variability. 
“Statistics in practice resembles a dialog between models and data” (Cobb & Moore, 
1997, p. 810), a contention well supported by social studies of professional statisti-
cians (e.g., Hall, Wright, & Wieckert, 2007; Pfannkuch et al., 2016; Wild, 2006; 
Wild & Pfannkuch, 1999). Accordingly, we aim to trace potential roots and path-
ways for bringing children into this dialog. Doing so requires taking a genetic view 
of the development of knowledge, reflecting a “commitment that the structures, 
forms, and possibly the content of knowledge is determined in major respects by its 
developmental history” (diSessa, 1995, p. 23). Moreover, we view developing sta-
tistical concepts (such as distribution or statistic) and learning to participate in mod-
eling practices as inherently co-constituted. Hutchins (2012) suggests the construct 
of concepts in practice to emphasize that changes in forms of participation in prac-
tice are accompanied by changes in concepts and vice versa. In professions such as 
statistics, modeling practices are embedded within particular configurations of cog-
nitive, social, and material forms (Knorr Cetina, 1999). Models are invented and 
contested within a larger system of communal goals, representations, materials, 
norms, and settings. But these disciplinary aspects of modeling can only be approxi-
mated in schooling, and some of them may be so distant from children’s experiences 
that they are poor candidates for instruction. Hence, our examination of research 
favors seeds of modeling that appear to be essential to the conduct of modeling, that 
are accessible to young students, and that are potentially capable of growth through-
out schooling, if systematically cultivated.

Statistical models are developed as accounts of variability. Yet conceiving of vari-
ability is a multifaceted enterprise that includes imagining or participating in the 
process of creating a sample, visualizing and measuring distribution, differentiating 
between causal and random sources, and putting variability to use in making predic-
tions and inferences (McClain & Cobb, 2001; Reading & Reid, 2010; Reading & 
Shaughnessy, 2004; Ridgway, 2015). Studies of professional practice underscore that 
variability is initiated and interpreted within cycles of inquiry (Wild & Pfannkuch, 
1999). For example, in a study of conversations between a statistical consultant and 
scientist clients, Hall et al. (2007) reported that the consultant foregrounded the pro-
gram of inquiry established by the scientists, repeatedly diverting their focus on 
using a particular statistical method to reflecting back on “… again the question 
you’re you’re asking… back, always back to that … I mean, what what’s the ques-
tion?” (pp. 110, 113). Wild (1994) also notes that the nature of the question typically 
provokes reflection about the qualities of a system that are worthy of attention and 
establishes the need to measure these qualities. Hall, Stevens, and Torralba (2002) 
describe how a negotiation between a statistician and a team of entomologists 
resulted in a new measure of differences among chemical profiles of insects. This 
measure, in turn, transformed qualitative judgments made by entomologists to quan-
tities that could more readily serve to differentiate numbers of distinct colonies 
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within a species, eventually altering the nature of investigation by the entomologists. 
In related efforts that employed interviews of statisticians about their practices, 
Pfannkuch and her colleagues (Pfannkuch et al., 2016; Wild & Pfannkuch, 1999) 
clarified that when conducted by professionals, modeling variability entails coming 
to grips with multiple senses of variability.

It is clear from these studies of professional practice that if we were to follow 
statisticians for any significant duration, we would trace a dense configuration of 
institutional settings, conceptual and material tools, financial arrangements, col-
laborators, and competitors. We should not ignore these complexities of practice as 
we consider images of statistical worlds, but because we are concerned with intro-
ducing children to these systems and ways of thinking, our goal is to support chil-
dren’s development in ways that are pedagogically fruitful and tractable. To balance 
complexity and tractability, we find it helpful to focus on a framework that we call 
“data modeling.” This framework suggests how approximations to professional 
practices of modeling can be coordinated to support children’s developing apprecia-
tion of variability and uncertainty (English, 2010; Hancock, Kaput, & Goldsmith, 
1992; Lehrer & Romberg, 1996). We outline this perspective in the next section.

7.2  Data Modeling

Figure 7.1 outlines a network of concepts in practice that afford entrée to and pro-
spective pathways of development for thinking about variability during the course 
of schooling. The intention is to create conditions that engage children in develop-
ing productive approximations to each node of the network and in learning to coor-
dinate them to describe and account for variability. By approximation, we mean that 
the form of practice introduced to children preserves its professional function but 
not its professional complexity. For example, formal treatment of probability den-
sity is not typically a target of K-6 instruction, but inference in light of data is, so 
educators often characterize their efforts as promoting “informal inference” (Makar 
& Rubin, 2009). Informal inferences go beyond particular cases to make generaliza-
tions that recognize uncertainty of the inference, perhaps by using linguistic hedges 
such as “may” or by referring to a neighborhood of values.

With approximation in mind, the upper portion of Fig. 7.1 addresses practices 
involved in the conduct of inquiry, ranging from posing researchable questions to 
deciding what about a system is worthy of measure and designing investigations 
that will generate a sample of observations. The double arrows depicted in the figure 
indicate a network of mutually constituted activity and understandings. For exam-
ple, attempts to characterize attributes of a system guide the development of mea-
sures, and the design of measures often makes problematic the nature of the 
attributes being measured. Questions, attributes, and measures act in concert to 
inform the design of investigation, including the nature of observation, the selection 
of units of observation, and the material arrangement of conditions to facilitate 
observation. These elements are deployed to generate a sample representing the 
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population defined by the characteristics and measures of the process of interest. It 
is here that variability is manifested.

The lower portion of Fig. 7.1 refers to structuring, representing, measuring, and 
modeling the variability now evident in the sample. These forms of activity are also 
mutually dependent. For example, visual displays of data often suggest that some 
statistics may be more appropriate measures than others. Models of chance are the 
principal means of expressing uncertainty about inferences. A sidenote may be 
helpful here. We are often asked: What is a model? How is it different from a repre-
sentation or measure? Our perspective is that representations of variability take 
many forms, including visual display, data structures, measures, and models, and 
each of these is a way to get a grip on the multiple senses of variability noted previ-
ously. Data modeling refers to the assembly of these representations, what Latour 
(1999) characterizes as circulating reference, to guide inference. Within this net-
work, a model is a system composed of random and causal components that stands 
in for the process that generates the variability observed in the sample (Gould, 
2004). Statistical models, unlike other forms of modeling, have a probability struc-
ture, ideally one that is made explicit in the model (Pfannkuch et al., 2016).

Note, too, that the capstone of modeling is inference, and in statistical practice, 
two distinct, albeit often coupled, approaches are apparent in professional practice. 
The first approach, visually-guided inference, is primarily accomplished by consti-
tuting images of trends of variability in a sample. These trends are often rendered 
narratively to create a causal rhetoric supported by patterns made visible by image 
(Cobb & Moore, 1997; Kosara & Mackinlay, 2013; Rodgers & Beasley, 2014; 
Rosling, 2010; Segel & Heer, 2010; Tufte, 1983, 1997). As an example, consider the 
now-classic image of the distribution of global wealth in the form of an evocative 
champagne glass, as displayed in Fig. 7.2. This image informs a reader about the 
global distribution of wealth at a glance, in part through the ironic association pro-
voked by the champagne flute, a vessel for the vintage of the wealthy (Champkin, 
2014). The inequality in distribution of wealth is manifest, and concerns about uncer-
tainty, perhaps most pronounced at the boundaries of the regions, seem pointless.

With digital technologies, new opportunities for storytelling arise through 
dynamic images. For example, with Gapminder an analyst can animate cases and 
regions of data (Rosling, 2010; Rosling, Ronnlund, & Rosling, 2005). These ani-
mated images are often cues to narrative. For example, Hans Rosling1 recruits nar-
rative devices, such as personification (e.g., relating his family’s history to the 
aggregate), time jumping (e.g., juxtaposing two different periods in time), and 
sportscast-like metaphors of racing to maintain viewer interest and to clarify com-
plex patterns in global data (Kahn & Hall, 2016). As we later describe, telling sto-
ries about visualizations of data provides avenues for inducting children into 
practices of inference. The second approach to inference relies on explicit probabi-
listic modeling of the uncertainty that arises from sample-to-sample variability, 
which in turn requires conjecturing the nature of the stochastic process generating 

1 https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen?language=en)
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observed samples (e.g., Pfannkuch et al., 2016; Wild & Pfannkuch, 1999). This face 
of inference is associated with hypothesis testing, confidence intervals, and making 
decisions in light of uncertainty. Visually guided and model-based forms of infer-
ence are usually coordinated because decisions made in light of stochastic models 
are themselves anchored in theories and models of the world, so that cause and 
chance are typically synchronized (e.g., Wild, 2006).

7.3  Introducing Data Modeling to Children

Having introduced this network of aspects of variability, we turn now to examine 
evidence about the feasibility and intelligibility of introducing children to practices 
of data modeling. Competence in data modeling is increasingly urgent because 

Fig. 7.2. UN report graphic on global wealth distribution (Champkin, 2014)
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young children now routinely encounter a wide range of data in an increasingly 
diverse space of media. However, in these media, the data construction process is 
often obscured or is simply unavailable, and claims are often made without consid-
ering variability and uncertainty. Schooling in the early years should support chil-
dren to participate in practices of data modeling so that they are in a better position 
to appreciate and even participate in this increasingly data-centric world.

One powerful approach to developing these core competencies entails positioning 
children to participate in multiple aspects of data modeling spanning diverse contexts 
and associated processes. Consistent with the view of data modeling illustrated by 
Fig. 7.1, these aspects include (a) posing statistical questions within meaningful con-
texts that highlight variability; (b) generating, selecting, and measuring attributes that 
vary in light of the questions posed; (c) collecting firsthand data so that children 
encounter decisions about the design of investigations; (d) representing, structuring, 
and interpreting sample and sampling variability; and (e) making informal inferences 
in light of all these processes. Making informal inferences includes recognizing 
uncertainty, detecting variation, and making predictions (English & Watson, 2015; 
Lehrer & Romberg, 1996; Lehrer & Schauble, 2002a, 2002b; Makar, 2016; Watson & 
English, 2015). In the sections that follow, we examine studies that provide children 
with opportunities to participate in these aspects of data modeling.

7.3.1  Grounding Data Modeling in Inquiry

7.3.1.1  Posing Questions

A statistical question is the starting point for any investigation; data are generated in 
a context of inquiry (Moore, 1990). Yet, posing questions is underrepresented in 
many elementary curricula (Allmond & Makar, 2010; Lavigne & Lajoie, 2007), 
perhaps because children’s initial questions are often informal and broad (English, 
2014a; Whitin & Whitin, 2011). Children often find it difficult to generate questions 
that can be investigated or to envision the data that can address their questions 
(Allmond & Makar, 2010). Lehrer and Schauble (2002b) suggest that many of the 
challenges of posing questions for children can be ameliorated when children are 
given sufficient opportunity to build familiarity with the phenomena being investi-
gated, including opportunities for observation, conversation, and texts that address 
the target phenomena. As children’s interest is cultivated, teachers support inquiry 
by encouraging children to “collect, categorize, and evaluate the questions posed by 
the group” (p. x). Teacher support is critical for cultivating a disposition to ask. For 
example, Allmond and Makar (2010) engaged 9-year-old children in generating and 
differentiating among questions that could be investigated from those that could not. 
Children also tried to envision the data that could address each question, and they 
were encouraged to collaboratively refine questions of description (e.g., “How 
many peaches are in a can?”), to generate questions of greater collective interest 
(e.g., “Is there the same amount of peaches inside [every can]?”). After completing 
several iterations of this process, students were far more likely to generate questions 
that could be investigated.
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Iteration of questions in response to changing conditions of investigation also 
appears critical. Older children (age 11) investigating aquatic ecologies began with 
very broad or even irrelevant questions, such as “Who lives here?” or “How much 
blood can a leech suck?”. As they continued their investigations and became more 
familiar with characteristics of the ecosystem, their questions began to reflect higher 
disciplinary importance, such as, “Is the animal life in Pond 2 more diverse than in 
Pond 1?” Moreover, their questions were more tractable for investigation in light of 
the material, social and cognitive resources at their disposal. The classroom teacher 
supported an aesthetic dimension by repeatedly soliciting students’ judgments and 
justifications about the qualities of “good” research questions. As students proposed 
and defended their criteria for good questions, the teacher publically posted the 
criteria that achieved widespread consensus (Lucas, Broderick, Lehrer, & Bohanan, 
2005). Students’ criteria shifted over the academic year from an early focus on 
whether questions were tractable (“Genuine, we don’t already know the answer”; 
“Doable”) to a growing concern with collective accountability (“People can piggy-
back on the question, build on previous questions”) to whether questions supported 
knowledge sharing across the classroom community (“The answer to the question 
contributes toward everyone’s understanding”). The trajectory of student questions 
increasingly reflected productive disciplinary values of collective inquiry.

A further and less studied aspect of children’s question posing concerns their 
willingness to treat sample data as objects of secondary inquiry. For example, 
10-year-old students were surprised to find that the sample data they had generated 
from a survey of their own design could also be used to address questions that were 
not originally posed in the survey (Lehrer & Romberg, 1996). Since questions typi-
cally arise during conversation, it may be challenging for children to conceive of 
responses to questions as being subject to inquiry from a source other than a 
respondent.

7.3.1.2  Developing Attributes and Their Measures

Identifying the attributes that are best for addressing a question of interest neces-
sitates “seeing things in a particular way, as a collection of qualities, rather than 
intact objects” (Lehrer & Schauble, 2007, p. 154). For example, kindergarten chil-
dren ordering several pumpkins by “size” had to grapple with what size meant, 
some proposing height and others, “fatness” (circumference). Having proposed 
these characteristics, children found that comparisons relied on developing collec-
tive understandings about what each characteristic meant. Similarly, first-, second-, 
and third-grade children who were investigating the growth of organisms decided 
first about which aspects were the best indicators of growth, such as the “fatness” 
and length of insect larvae or the height and canopy volume of plants. To support 
comparisons across organisms, children had to agree about methods and forms of 
measure, and failure in these methods and forms often led to redefinition of the 
attributes, as well as the measures (Lehrer & Schauble, 2005; Lehrer, Schauble, 
Carpenter, & Penner, 2000). Similarly, Manz (2012, 2015) traced how “bumps” 
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(leaf nodes) became accepted in a third-grade classroom as meaningful indicators 
of plant growth and how production of seeds became agreed-upon indicators of 
plant success.

In a longitudinal study across grade levels 1–3 (ages 6–8 years), English (e.g., 
2013, 2014b) employed storytelling to generate opportunities for children to decide 
upon the nature of attributes worth attending to by the story characters. For exam-
ple, as they thought about ways to help a character clean up his room, children 
developed classifications for items to be gathered and sorted. In the process, they 
had to agree upon which attributes of the items to attend to, which instigated the 
need to achieve agreed-upon definitions of attributes. A core goal was providing 
opportunities for children to focus on the attributes of the items and the ways they 
varied, so that children could identify, classify, and represent attributes in more than 
one way. Similarly, diPerna (2002) provided third-grade children with self-portraits 
drawn by K-5 children. As children considered the variability of the portraits in the 
set, they generated questions about the differences that they observed in portraits 
drawn by artists both between and within grades. Of the many questions that were 
proposed, the children and teacher settled on, “What are some body parts that will 
show progress [in drawing ability] from pre-K to fifth grade?” (p. 82). To investi-
gate, children were confronted with the problem of generating and defining compa-
rable attributes, just as those in the English (2013) study. This proved challenging, 
and they initially tended to describe body shapes as “stick figures” or “bubbled out.” 
These first descriptions proved too global and indistinct, so children refined them to 
include how the artists drew hands, eyes, and hair. Once students agreed on attri-
butes that seemed to differentiate the portraits drawn by different-aged artists, the 
practical and critical problem of measure became evident. The categories of eyes or 
hair or nose that children proposed were as plentiful as the number of portraits. For 
example, children proposed 14 different eye shapes—an approach that made com-
parison across grades very difficult. Eventually, children settled on a more tractable 
set of categories, including “football-like” and “circle-like” eyes. These and other 
findings suggest that the advice of Hanner, James, and Rohlfing (2002), who repli-
cated this study across grades 1 through 6, is still appropriate:

Very often, teachers solve all the interesting issues for kids and present them already 
resolved to children, without giving children the opportunity to grapple with such questions 
as, “What attributes should we include?” How many attributes should we consider?” and, 
“How should they be represented?” When teachers take over these decisions, all that’s left 
is a cut-and-dried graphing or sorting activity, in which teachers have done all the intriguing 
and motivating thinking ahead of time. (p. 106)

Designing and Conducting Investigations. If students are to overcome the diffi-
culties in linking questions to data (Hancock et al., 1992), questions must contain 
seeds of investigation that are within the reach of children but not within their 
immediate grasp (e.g., Allmond, Wells, & Makar, 2010; English, 2010; Lehrer & 
Schauble, 2002a, 2002b; Makar & Rubin, 2009). Questions must motivate progres-
sive cycles of defining attributes and considering their measure. And, as we noted 
previously, if the cycle of question posing is sustained for more prolonged periods 
of time, there may also be opportunities for refining questions in response to the 
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changing status of attributes and their measures (e.g., Lucas et  al., 2005). More 
prolonged periods of time also create opportunities to engage children in the design 
and conduct of inquiry. For example, fifth-grade students designed a survey to com-
pare their lives with those of early colonists. As they generated and developed these 
data, students came to understand both the virtues of representative samples and, by 
looking across multiple classroom responses, the inevitability of sample-to-sample 
variability—in this case, different proportions of boy and girl respondents across the 
classes of the school (Lehrer & Romberg, 1996). Cotterman, Lehrer, and Schauble 
(2014) observed similar change in motivating questions and attributes and measures 
as sixth graders conducted an investigation of a local creek ecology. Students’ expe-
riences with variation in measures instigated practical and conceptual changes in 
what they considered as a representative sample. At the onset of their investigation, 
students did not consider inference from a single sample problematic, but by the end 
of their investigations, they advocated for multiple samples as necessary in light of 
sampling variability. Similarly, at the onset of investigation, a sample’s location was 
not considered important, yet students soon embraced the need to create representa-
tive samples by partitioning the space of the creek to make inference about ecosys-
tem functioning. As they collected data, students debated about whether the absence 
of an observation should be considered as a valid value in a sample.

Other potential payoffs for longer-term investigation include opportunities for 
students to come to understand the grounds of experiment, to develop protocols for 
observation, and to consider how choices of tools and techniques influence what one 
considers as a sample (Lehrer, Schauble, & Lucas, 2008; Lehrer & Schauble, 2012; 
Manz, 2012, Manz, 2015; Watson & English, 2015). These findings about sample 
and sampling variation are not typical in the thinking of elementary school children 
or even older students, who often prefer a census to a sample (e.g., Jacobs, 1999), 
conduct biased sampling to ensure the collection of attributes of interest (Schwartz, 
Goldman, Vye, & Barron, 1998), and generally fail to recognize sampling variabil-
ity (Rubin, Bruce, & Tenney, 1991). Moreover, many students do not link chance to 
sampling and fail to appreciate the role of chance in creating representativeness and 
minimizing sampling variability (Ben-Zvi, Bakker, & Makar, 2015; Schwartz et al., 
1998; Watson & Moritz, 2000).

In sum, whether longer or shorter term, investigations that involve students in 
posing questions, developing attributes and their measures, and generating data 
firsthand all contribute to articulating data as constructed, not simply as given or as 
arising from some remote process. Data construction is also a gateway to noticing 
variability, at first as simple differences in values of measured attributes, even in 
comparatively sparse contexts such as “how we wake up in the morning” (Putz, 
2002), traffic patterns on local streets (Gavin, 2002), planning for a picnic (English, 
2011), what canines eat (English, 2013), and personal preferences for varieties of 
peaches (Allmond et al., 2010). Children also notice values that do not make sense 
or that are inappropriate, given the context (English, 2012). In the next section, we 
examine children’s conceptions of variability when they have more extensive oppor-
tunities to structure it.
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7.3.2  Structuring Variability

Children’s initial perceptions of variability may be restricted to simple indexes of 
events that generate variability, as in, “We said our favorite colors” (Konold, 
Higgins, Russell, & Khalil, 2015, p. 309). However, as we noted in the preceding 
section, noticing different values of a measured attribute, a “case-value” perspective 
(Konold, Higgins, et al., 2015), is more commonplace. We turn attention in this sec-
tion to studies that seek to support children in going beyond the case to reason about 
data as an aggregate. Aggregation is an important stepping-stone toward conceiving 
of data as distributed (Konold, Higgins, et al., 2015; McClain & Cobb, 2001).

7.3.2.1  Visualizing Variability

In this section, we focus on what children learn by inventing, revising, and contrast-
ing representations of variability (e.g., English, 2013; Lehrer & Schauble, 2002b). 
One strand of research focuses on inventing displays as tools for promoting repre-
sentational and meta-representational competencies (diSessa, 2004; Greeno & Hall, 
1997). To illustrate, the upper panel of Fig. 7.3 displays a facsimile of a display of 
silkworm larvae lengths measured at a particular day of growth. The display was 
invented by third-grade (age 8) children. The lower panel represents all 261 mea-
surements that children generated as a TinkerPlots case-value plot. Children took 
these measurements as they participated in a unit on the social origins and impact of 
the commercial production of silk (Lehrer, 2011; Pellegrino, Wilson, Koenig, & 
Beatty, 2014). Notice that the children’s invention emphasizes the value of each 
individual case and its use of oval icons for each mm of length is a reminder of the 
morphology of the larvae. However, it also tends to treat space nonuniformly, and 
so at a glance, lengths of the same measure can appear to have different values (see 
also, Cengiz & Grant, 2009). There is no such ambiguity in the TinkerPlots display, 
which also occupies a relatively compact area in contrast to the large portion of the 
classroom wall that was occupied by the student invention with all 261 measure-
ments represented. Regardless of these advantages of the digital display, the paper 
technology provided an important pedagogical opportunity for students to develop 
representational competence about the use of space. As they reviewed the display 
shown in the figure, about what different inventions made visible (what they “show”) 
and what they tended to reduce (“hide”), several children in the class suggested that 
the icons needed to be of uniform size.

Figure 7.4 is a facsimile of another display invented in the class, and notice that 
it, too, uses space nonuniformly. But it also makes use of a classifier (an interval) 
and a count to create a different shape for the same data. Frequency represents an 
imposition of structure that is not available in the case-value perspective (Confrey, 
2011). This invention makes the center clump of the data more visible, although 
the center clump can also be seen as a plateau in the case-value plot. As the class 

7 Introducing Children to Modeling Variability



240

Fig. 7.3 A portion of a case-value visualization of the lengths of 241 silkworm larvae invented by 
a pair of third-grade (age 8) children to represent variability (left panel) and its TinkerPlots coun-
terpart (right panel)

Fig. 7.4. Child invented display of the lengths of 261 silkworm larvae at a particular day of growth
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compared these displays, the teacher asked children to take the perspective of the 
inventors and to conjecture about how the choices made by designers resulted in 
different shapes for the same data. Following the conversation about showing and 
hiding, one of the inventors of the case-value display wrote in his journal (invented 
spellings are replaced here with conventional spellings): “We chose (to make) this 
because it was easy to understand. It was hard to make all the silkworms evenly … 
Next time I will make numbers (a reference to frequency).”

Children’s journal entries were often anchored to episodes in the classroom, 
recalling, for instance, when children compared some of the longer larvae to 
their teacher’s pinky. These comparisons, along with other invented displays that 
used the scale of measurement to show “holes” in the data, reflect an aggregate 
perspective (Konold, Higgins, et  al., 2015) in which children attended to the 
entirety of the data. The discussions prompted several children to envision sce-
narios of competition in which early-hatching larvae were able to consume more 
resources than later- hatching larvae. Imagining competition for resources is a 
valuable conceptual tool for understanding variability within and between spe-
cies and illustrates the importance of narrative-like interpretations of displays, 
for both children and professionals alike.

A second, related strand of research suggests that invention and comparison of 
displays also promotes transitions from case to aggregate perspectives (Bakker & 
Gravemeijer, 2004; English, 2014a, 2014b; Lehrer & Schauble, 2004). For exam-
ple, 8-year-old children developed investigations to learn about their classmates’ 
views of a new school playground (English, 2014a, 2014b). Working in nine differ-
ent student groups, the children created four survey questions, and the class collec-
tively responded to a subset of these questions. Children were encouraged to 
represent the class responses in more than one way. Seven created two or more 
representations and one group created four. The diversity of invented representa-
tions reflected the range of perspectives on data noted previously, and this variabil-
ity helped children understand the value and motivation of perspectives that they did 
not generate. Similarly, Lehrer and Schauble (2004) challenged fifth-graders to 
invent displays of plant heights at a particular day of growth, and subsequent class 
conversations revealed the mathematical procedures inventors employed (e.g., 
count, order, scale) to generate different shapes for the same data. This variability 
prompted several students to shift from case to classifier and/or aggregate perspec-
tives. Bakker and Gravemeijer (2004) noted a surge in (seventh-grade) student talk 
about shape of the data when they were encouraged to invent their own representa-
tions of a collection of measures of student weights. Cengiz and Grant (2009) found 
too that as elementary children compared and contrasted different representations of 
data, they came to appreciate the role of scale in determining the shape of the data.

Digital technologies, such as TinkerPlots (Konold & Miller, 2011), offer new 
avenues for visualizing data and supporting the transition from case-based to aggre-
gate conceptions (Bakker & Gravemeijer, 2004; McClain & Cobb, 2001). Supports 
for distributional (aggregate) thinking include enabling students to organize the data 
as cases, consistent with their common starting point of viewing variability as 
 simple difference. With TinkerPlots, related tools for structuring data afford re- 
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representation of cases as collections of similar values, consistent with a classifier 
perspective, or as positions along a dimension of possible values, consistent with an 
aggregate perspective (Bakker & Gravemeijer, 2004; Cobb, McClain, & Gravemeijer, 
2003; Konold, 2007). Hammerman and Rubin (2004) claim that these features 
allow learners to get a handle on variability by reducing it into manageable chunks, 
as in the example of the binning function in TinkerPlots. Binning results in collec-
tions of similar values but still maintains the aggregate (e.g., compare the displays 
in Figs. 7.3 and 7.4).

In summary, positioning children to participate in cycles of representational 
redescription of data collected for some meaningful purpose encourages develop-
ment of multiple perspectives on data. These multiple perspectives often emerge as 
children consider how the mathematics of count, interval, and scale can be put to 
use to highlight what they have noticed. As children invent, they have opportunities 
to consider how the shape of the data, its visual appearance, is influenced by use of 
these mathematical means. For example, “center clumps” and related guideposts to 
interpreting variability are much less visible in case-value displays than in dot plots. 
It is important that visualizing data informs children about something that they do 
not already know about the data. The discovery of something new is one of the pri-
mary motivations for visualizing data in professional practice. However, as Konold, 
Higgins, et al. (2015) caution, “… the perspectives one takes on data should serve 
one’s questions rather than the other way around” (p. 323). Hence, although aggre-
gate and classifier perspectives have dominated our presentation of children’s efforts 
to represent, it is useful to recall that case-value perspectives are not always mere 
starting points to more sophisticated ways of representing. Children often view 
case-value displays as persuasive ways of representing variability, for example, 
looking for “plateaus” in case-value plots as indexes of low variability in regions of 
data (e.g., Lehrer & Schauble, 2004). In other situations, as well, case values may 
be better representations in light of the question. After all, meta-representational 
competence means having a wide repertoire of perspectives and selecting appropri-
ately among them (diSessa, 2004).

7.3.2.2  Structuring Variability by Measuring

Children typically treat statistics as computational artifacts, rather than as measures 
of characteristics of distribution (e.g., Bakker, 2004; Watson, 2006). Watson (2006) 
mentions that the mean is often privileged, so that other measures of central ten-
dency, such as median and mode, are “often portrayed as poor relations of the mean” 
(p. 121). Yet in contexts of data modeling, children can come to understand statistics 
as measures of distribution that guide inference about questions (Makar, 2014). One 
way to support this conception is to position children to invent statistical measures 
of center and spread and to evaluate these measures as indicators of a distribution’s 
characteristics (Bakker & Gravemeijer, 2004; Konold & Pollatsek, 2002; Petrosino, 
Lehrer, & Schauble, 2003). Konold and Lehrer (2008) recommend that repeated 
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measure and production processes characterized by signal and noise support mak-
ing sense of statistics as measures. In contexts like these, measures of center corre-
spond to signal, and measures of variability correspond to noise (English & Watson, 
2015; Konold & Pollatsek, 2002; Petrosino et al., 2003). Signal and noise in these 
contexts can both be considered as caused, even as variation about them can be 
considered as arising due to chance, beyond the control of individual agents. This 
duality is an important resource for learning to think statistically (Biehler, 1999).

For example, Prodromou and Pratt (2006) report how two students interacted with 
a microworld designed to promote a link between cause and chance. The microworld 
consisted of random generating devices, such as spinners and dice, which were 
described as defective, so that students could fix them in contexts involving signal 
and noise (e.g., a basketball player trying to make shots). Their approach was to 
provide digital tools so that students could influence the probabilities of events. As 
one pair of students (14 years old) noted: “When the arrows (sliders in the micro-
world) are close together, it’s got more a chance of going into the net” (p. 83, paren-
thesis added). This remark reflects a coordination between cause and chance.

In Petrosino et al. (2003), fourth-grade children invented a measure of variability, 
a “spread number,” to describe the height of the apogee of a rocket as determined by 
multiple measurers. They did so by finding the median of the absolute values of dif-
ferences between each measured apogee and the sample median. Students noted 
that a value of zero would correspond to all measurers getting exactly the same 
value, a comment that indicates they are regarding the statistic as a measure. They 
also noticed that as their methods of measurement improved, the spread number 
decreased. These observations provided an avenue for coordinating cause (change 
in method) with chance (residual error variability). Similarly, fifth- and sixth-grade 
students measured the arm span of their teacher with two different tools, a 15 cm 
ruler and a meter stick. They noticed that the change in tools caused a change in the 
variability of the resulting collection of measurements. Nonetheless, no matter how 
“carefully” students measured and how assiduously they avoided “mistakes,” they 
found although they could influence the magnitude of variability, they could not 
eliminate it (Lehrer, Kim, & Schauble, 2007). Konold and Harradine (2014) suggest 
that, in contexts of repeated measure and production, “… because we are in control 
of these processes, we can minimize variability” (p. 242). Moreover, in these con-
texts, students can provide “detailed descriptions of process components that pro-
duce variability” (p. 240).

Whole-class critiques of student-invented measures can play an essential role by 
affording opportunities for students to analyze the grounds of proposed measures 
and to consider generalization to distributions that can be conceived, even if they 
were not explicitly generated during the conduct of investigation (Lehrer & Kim, 
2009; Lehrer, Kim, & Jones, 2011). Conceiving of sample distributions consistent 
with a process but not yet realized (in real data) is likely an important resource for 
developing understanding of sampling variability (Thompson, Liu, & Saldanha, 
2007). Another virtue of signal-noise contexts revealed by these studies is that the 
processes generating them are accessible to students, so that they can anticipate 
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why, for example, a change in a method of measure might affect the value of a mea-
sure of variability much more substantially than it will a value of a measure of 
center (Lehrer et al., 2007).

In summary, traditional instruction often treats measures of distribution, such as 
characterizing its center and variation, as matters of computation. But there is clear 
evidence that children can come to recognize statistics as ways of measuring char-
acteristics of distribution. Bakker and Gravemeijer (2004) claim that when students 
do so, they are viewing data through the lens of distribution, in contrast to a mere set 
of data values. It may be that contexts of signal and noise have unique affordances 
for introducing children to statistics as measures, although other contexts involving 
meaningful (for children) social processes and even natural variation may also have 
advantages (Ben-Zvi et al., 2015).

7.3.2.3  Organizing Variability as Data Structure

Most research focused on introducing students to data modeling either tacitly or 
explicitly employs a case-by-attribute table structure. Hancock et al. (1992) noted 
that children often find this format challenging and prefer to associate individual 
cases with separable sets of values. For example, as they recorded data about the 
gender and names of a group of people, children preferred to sort the names into the 
two genders rather than to code them using the attributes name and gender. In a 
study of student-generated data models to predict the age-grade of artists who drew 
pictures of houses near and far, young children in the study (grades 1, 2) generated 
unique attributes and values at each grade level. In contrast, older children (grades 
4, 5) were able to employ common attributes with multiple values that spanned the 
range of the artists’ grades. This dimensional structure allowed older, but not 
younger, children to create predictive models based on combinations of attributes 
and values that spanned the ages of the artists (Lehrer & Schauble, 2000). The older 
children’s creation of a case enabling comparison across units of observation is “at 
the very foundation of data modeling” (Konold, Finzer, & Kreetong, 2015, p. 4). In 
the Konold et al. (2015) study, participants at the middle and high school level, as 
well as adults, reviewed schematics of traffic flow with variables such as time and 
date and vehicle type. Then they created a data organization that would assist city 
planners. The youngest members of the sample spontaneously, and in a brief span 
of time, created narratives that bound information on multiple variables together 
into cases, as in “Car 4, going at 50 mph, 30 feet behind car 3.” Thirty- seven percent 
of these students created tables, most of them reflecting a nested structure, not the 
flat, case-by-attribute structure that is most prevalent in applications and in educa-
tion. Hence, it appears that most forms of data structure employed in elementary 
schools do not align well with how children or even older students tend to think 
about the organization of data.
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7.3.2.4  Structuring Chance Variability

One of the primary contributions of statistics consists of ways and means of structur-
ing random variability. Yet children and even older students usually consider vari-
ability deterministically (e.g., Ben-Zvi, Aridor, Makar, & Bakker, 2012; Metz, 1998). 
For most children, chance is a synonym for haphazard, and they often believe that 
personal agency (e.g., lucky numbers) can explain any structure in variable events 
(e.g., Horvath & Lehrer, 1998). Many also interpret probability as a description of a 
single outcome (Konold, 1989). Saldanha and Thompson (2002) indicate that a con-
ception of repeated random process is foundational for developing conceptions of 
probability, and several studies explore children’s conceptions of probability when 
they engage in exploring and explaining the behavior of simple random processes.

Fielding-Wells and Makar (2015; see the description in Chap. 8) focused on shifting 
young children’s (7–8-year-olds) notions about equiprobability, that is, believing that 
all outcomes of a chance process must be equally likely (Hawkins & Kapadia, 1984). 
Children played Addition Bingo, which involved generating all possible combinations 
of the sum of two numbers (1–10), each written on a slip of paper and placed in a box. 
Children were given a card consisting of a 5 × 5 array of self-selected numbers, that is, 
their predictions of which number sums would be called, allowing for repeated num-
bers. As each sum was drawn (e.g., 2 + 9) from the box, the children marked off the 
sum (in this case, 11) if it appeared on their card. The player who was the first to mark 
off all of the numbers on his/her card was the winner. While trying to provide evidence 
of the “best” card that would win the bingo game, the children encountered conflicts 
between what they expected and the outcomes of the game. Considerations of sample 
space arose when students noted that the frequencies of each sum they recorded dif-
fered from those of their peers. Considering the sample space helped explain this obser-
vation. Continued play with smaller, faster versions of the bingo game, accompanied 
by a dot plot to keep track of the successive numbers called, helped children to envision 
and anticipate structure in random variability.

This anticipation of structure was also evident in research conducted by Horvath 
and Lehrer (1998), in which second (age 7)- and fourth-grade children (age 9) first 
observed and recorded the outcomes of repeated throws of a single six-sided die. 
Initially, children interpreted differences in the frequencies of outcomes of the die 
as evidence of their own agency, in line with early understandings of chance vari-
ability. For example, a child claimed that higher frequency meant, “Well, it has 
always been my lucky number, you know” (p. 139). Agency-based reasoning may 
be derived from a feeling of physical control of the die (Pratt, 2000). As children 
aggregated results of repeated trials, a growing sample approach (Bakker, 2004), 
lucky numbers, and related forms of agency began to seem less tenable.

Most children shifted toward expecting equally likely outcomes and treating dif-
ferences among outcomes as noise instead of as signal. When they began throwing 
two eight-sided dice and finding the sum, children noticed a new shape emerging. 
They dubbed it the “mountain” and predicted a similar shape for throws of a 
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 six- sided die. A minority of the youngest children related the mountain to “ways of 
making them” (permutations or combinations), comparing ways of generating sums 
of 16 and of 9 for repeated throws of two eight-sided dice. Enumerating ways of 
making was more commonplace and accessible with older, fourth-grade (9 years of 
age) students conducting similar investigations. Older children were much more 
likely to explain empirical outcomes by recourse to the sample space. However, at 
both grade levels, contests between permutation and combination as counting meth-
ods for sample spaces were not resolved, perhaps because both resulted in global 
mountain shapes. Moreover, aggregating across throws of dice provoked consider-
able debate among the younger, grade 2 children. Some advocated that they should 
be allowed to throw the die in ways that allowed them to bias the outcomes toward 
lucky numbers, just so long as the dice did not produce the lucky number all of the 
time. This was a hybrid of their original sense of control over the dice with their 
growing realization, emerging from repeated trials as the sample grew, that they 
lacked control over particular outcomes. Other second-grade children saw this pro-
posal as unfair. They argued instead for a norm that would govern throws that could 
be combined in ways that would not bias the outcomes. Apparently it is worthwhile 
to explore circumstances under which one event can be construed as enough like 
another event to warrant status as repeated. Children’s concept of a trial is important 
to consider in their explorations of probability.

Pratt (2000) claimed that digital microworlds offer opportunities to extend chil-
dren’s experiences of probability and thus provide new resources for learning. 
Accordingly, he designed a microworld in which students could amend a “working 
box” that rendered a version of the sample space so that they could construct a digi-
tal device that mimicked observed sums with material dice. This form of digital 
support was supplemented by his interactions with students to support systematic 
enumeration and to relate enumeration of outcomes to the relative proportion of 
sums displayed in a pie chart. Pratt suggests that children’s initial belief that fairness 
means the same likeliness of each sum was reconstructed so that fairness came to 
mean the equal representation of each possible outcome. This emphasis on fairness 
reconciled variation with expected values in the sums.

Similarly, Abrahamson (2012a, 2012b) described attempts to affect what he 
called a synthesis between perceptual and disciplined anticipations about the opera-
tion of chance. Students in grades 4–6 predicted the outcomes of drawing four balls 
from an urn that contained equal numbers of green and blue marbles. The four pos-
sible outcomes were structured perceptually by a spoonlike utensil with four slots, 
each of which held either a green marble or a blue marble. Students did not run the 
experiment, but tended to predict that the most likely outcomes were those involv-
ing (two green, two blue). Students then found the possible combinations ([0b, 4 g] 
[1b, 3 g] [2b 2 g] [3b 1 g] [4b, 0 g] and inscribed each on a card. Abrahamson 
described interactions with one sixth-grade student, who, after generating the com-
binations, changed his prediction to equal probability of all outcomes, in accord 
with this representation. The interviewer-teacher then induced the student to create 
all possible permutations and to represent them graphically as a “tower”  (pictograph). 
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The representation made it evident that the permutations involving [2b 2 g] outnum-
bered those of any other combination. Interviewer assistance highlighted the impli-
cations of each representation (combinations, permutations) for the prediction of 
outcomes, and the student eventually concluded that the representation of permuta-
tions was consistent with his first intuition. Abrahamson (2012b) suggests that 
designing so that students can reconcile their intuitions about chance with a disci-
plined conception of sample space provides an alternative to approaches that rely on 
conflict between anticipations and empirical results.

English and Watson (2016) also focused on the foundational concepts of varia-
tion and expectation as they attempted to support grade 4 (9 years of age) students’ 
understanding of probability. They investigated students’ initial expectations of the 
outcomes of tossing one and two coins, how their expectations changed as they 
repeated the numbers of trials, and how their use of computer simulation (via 
TinkerPlots, Konold & Miller, 2011) led them to understand the relationship 
between experimental estimates of probabilities and theoretical probabilities as the 
number of tosses increased. Three phases were identified in the development of the 
fourth-graders’ understanding of probability. Initially, students displayed a basic 
awareness of the uncertainty of chance events and some intuitive appreciation of 
probability with respect to independence of outcomes and coin type. For example, 
after tossing a coin once, children predicted the outcomes of another ten tosses. 
Most did not expect identical outcomes for each toss; approximately 35% were 
uncertain about the number of heads and tails yet expected about five of each due to 
“equal chance” (p. 41). When they predicted the outcomes of tossing two coins, the 
majority of the students’ responses aligned with the common equiprobability 
response of three equal outcomes, each with a probability of 1/3 (Hawkins & 
Kapadia, 1984). Some students (23%) predicted four possible outcomes, but the 
majority of these students did not associate these outcomes with probabilities.

During the second phase of instruction, students engaged in structuring and rep-
resenting the outcomes observed from tossing one coin ten times. Although most 
students readily observed the shape of the data (e.g., “mountain”), under half of 
them (45%) associated the central tendency of the outcomes with anticipations of a 
neighborhood of values about five heads. Limited reference was also made to chance 
as a reason for the center clump. When students used TinkerPlots to grow the num-
ber of trials for tosses of one coin, they were more likely to relate center clump to 
chance. When students progressed to tossing two coins 12 times, displaying their 
data from their group experiments disrupted their anticipations of equiprobabilities. 
It was clear from their experiments that “one of each” ([h, t] or [t, h]) occurred about 
twice as often as either [h, h] or [t, t.]

The final phase of instruction, formal model construction, involved students in 
displaying their experimental understanding symbolically and diagrammatically. 
The actual model construction, however, is only part of the process, as English and 
Watson stressed. In addition to constructing a model, students must be able to inter-
pret their model, explain what it conveys, and relate it back to their initial investiga-
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tive question. The majority of children (55%) did not relate probabilities of joint 
outcomes to the sample space in their models, but a substantial number (44%) 
 displayed the four repeated outcomes as HH, HT, TH, and TT and linked these 
appropriately to chance combinations of the two coins or to the probabilities of the 
corresponding outcomes. In the most advanced models, there was evidence of a 
sophisticated understanding of the probabilities. For example, Dagmar’s model 
listed eight possible outcomes and linked these to the probabilities of 1/4, 1/4, and 
1/2. She explained:

Well, there are two heads. One of the heads is in coin 1 and the other one is in coin 2. Then 
there are two tails, one of them is in coin 1 and the other one is in coin 2. Then there is one 
head and one tail, so um, the heads is in coin 1 and the tails are in coin 2 and then there’s the 
same one except they are rotated. The heads are in coin 2 and the tails are in coin 1. 
(Researcher [R]: And the fractions?] And then the fractions is, the first one, two heads is 1/4, 
the second one is 1/4 as well, two tails, and then both of them, the last one equals 1/2. [R: 
How did you work it out?] Well, I said, um … that’s 1/4 and that’s 1/4, and then I, um, that’s 
an equivalent fraction to 1/2 so yeah, so I just did 1/2 (English & Watson, 2016, p. 52).

In summary, research suggests that when it is carefully designed and supported by 
teachers, investigating the behavior of simple random devices can help children form 
an image of a long-term stochastic process and explain the outcomes of these pro-
cesses with sample spaces, when these are relatively easy to construct and enumer-
ate. There is a marked tendency for students to conceive of sample spaces as 
combinations, not permutations. Because the studies of children’s understandings of 
chance in these contexts span multiple decades and even continents, yet converge on 
similar findings, it would clearly be fruitful to engage children in considerations of 
chance more often and more systematically during the elementary years. The design 
of such instruction can now include new digital means for representing and experi-
encing the random variation of simple stochastic processes.

7.3.3  Informal Inference

The cycle of statistical inquiry depicted in Fig. 7.1 terminates and reinitiates with 
informal inference. For several decades, research has focused on informal inference 
as characterized by recognizing uncertainty, detecting variation, and making predic-
tions (English & Watson, 2015; Lehrer & Romberg, 1996; Lehrer & Schauble, 
2002a, 2002b; Makar, 2016; Watson & English, 2015). In much of the research 
reviewed to this point, children’s efforts to structure variability are grounded in the 
need to warrant inferences about questions and claims related to their inquiry. Many 
of the inferences that children make in these contexts rely on noticing characteris-
tics of displays and employing these to justify narrative accounts of, for instance, 
plant growth or of recycling in a community or of the behavior of a character in a 
story. Children are also apt to use cut-points and even differences between statistics 
in service of inferences that fit the criteria for informal inference suggested by 
Makar and Rubin (2009): these inferences are grounded in data as evidence, go 
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beyond particulars to reason about trends and related generalizations, and typically 
include recognition of uncertainty.

Makar, Bakker, and Ben-Zvi (2011) further suggest that contrasts between belief 
and data often amplify children’s recognition of uncertainty. In their study of grade 
6 students contesting whether sixth- or seventh-grade classmates could jump fur-
ther, outcomes in favor of sixth graders contradicted prior beliefs and prompted 
increased efforts to examine the nature of the samples more carefully. For example, 
students collected more than one sample because one of them noticed that random 
samples did not guarantee representativeness of gender (Makar et  al., 2011). 
Similarly, fourth-grade students (9 years) in Petrosino et al. (2003) compared the 
apogees of rockets with rounded and pointed nose cones. They firmly anticipated 
that the pointed nose cones would cut through the air and travel higher. Dividing a 
dot plot of values of height at apogee for a rounded nose cone into three “superbins” 
defined by the median and lower and upper bounds of a “spread number” (a statistic 
of variability), they found that 51% of the apogee measurements of rounded nose 
cones fell into this middle bin, and roughly equal percentages fell into the lower and 
upper bins. Treating the distribution of rounded nose cones as a reference distribu-
tion, their teacher invited predictions about where values from the pointed nose 
cone would fall. Students noted that they could not be certain, but predicted that 
most values would fall in the upper third of the reference distribution. They were 
surprised to find that 86% of the values occupied the lowest bin and reluctantly 
concluded that rounded nose cone rockets tended to go higher. As might be expected 
from the interplay between cause and uncertainty noted earlier, students had diffi-
culty reconciling this inference with their causal models of air resistance: “I don’t 
disagree, but I think it’s kind of weird that the, um, the pointed doesn’t go as high as 
the rounded. That doesn’t really make sense” (p. 145).

In other inquiry settings, US fifth-grade students conducted comparative investi-
gations of methods for remembering state capitols. After developing a pretest mea-
sure, they compared the effects of a process involving repeated rehearsal (“Sean’s 
method”) to the method of loci, a mnemonic method developed by an educational 
psychologist. Students’ initial analyses focused on the number of cases in each con-
dition that exceeded a cut-point, but other students noticed that the rehearsal method 
produced less variability than did the mnemonic method. This focus on relative 
variability, coupled with differences in the sample sizes associated with each condi-
tion, led students to consider relative proportions at dual cut-points representing 
fewer capitals recalled and more capitals recalled. This was a form of reasoning 
aligned with a classifier view of the distribution. It led to an informal inference in 
favor of Sean, even in light of the uncertainty produced by the variability of out-
comes (Lehrer & Schauble, 2002a). These studies suggest that the seeds of statisti-
cal inference are within children’s grasp in contexts that provide opportunities for 
inquiry, construction, visualization, and measure of variability, all considered in 
service of warranting a claim or answering a question.

However, most of the research tends to treat investigation of chance variability 
and of data variability distinctly. As we noted, many studies of children’s concep-
tions of probability focus on efforts to help children develop sample spaces as 
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explanations of the structure of outcomes for simple random devices. But these 
devices are rarely positioned as standing in for processes other than themselves. In 
contrast, integrated modeling environments feature children (usually at upper ele-
mentary grades) employing models of chance in service of inquiry about phenom-
ena in which chance variability is thought to be at play (Manor Braham & Ben-Zvi, 
2015). We reserve the term modeling for this enterprise—one in which children’s 
understandings of chance and the behavior of chance devices are harnessed to 
explain observed variability of something other than a random device. That is, the 
probability structure of the chance device serves as an analogical source for the 
target domain.

For example, fifth-grade students investigating claims about extrasensory per-
ception designed an experiment in which each student played two roles. One was to 
throw a six-sided die out of view of a partner while simultaneously concentrating on 
forming an image of the outcome. The other partner guessed the outcome. This 
process was repeated 20 times in each of four different conditions, ranging from 
extreme quiet to extreme noise. As students expected, the mean number of correct 
matches was highest in the quiet condition, a finding that confirmed their anticipa-
tion of the operation of ESP. Their teacher suggested that they model what might 
happen if the outcome had happened just by chance, a suggestion posed as an alter-
native explanation for their findings. Students first formed a composite variable for 
each of the 21 participants to represent the “total effects of ESP” across the 80 trials 
per participant. Then, they threw the die, recorded the outcome, and repeated the 
process 79 more times for each simulated participant. They were surprised to find 
that the distributions of the chance model and the data could not be distinguished 
and reluctantly concluded that “our high scores could be entirely due to chance” 
(Lehrer & Romberg, 1996, p. 101). Like good scientists, they were reluctant to give 
up and suggested refining their hypothesis, so that future work would focus on the 
outliers in the data! In the next section, we review contemporary efforts to help 
upper elementary (grades 5–7) integrate models of chance with data to generate 
informal inferences.

7.3.4  Model-Based Informal Inference

Manor Braham and Ben-Zvi (2015) advocate that youth interest should be the cen-
terpiece for modeling. In their study, seventh-grade (age 13) students employed 
questionnaires to generate data about peers’ musical preferences and explored rela-
tions among these preferences and other variables, such as gender. To integrate data 
construction and exploration with modeling, students used TinkerPlots to resample 
the large sample of questionnaire data to explore the relation between sample size 
and the confidence they might have in particular sample statistics, such as the mean 
percent of students who preferred rock-and-roll music. Student-generated models 
were employed to generate sampling distributions of preference-related statistics 
(e.g., the value of the sample mean percent preference for rock music from sample 
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to sample), with an eye toward exploring the variability resulting from the same 
model with varying sample sizes. In a case study of two students, one reasoned 
probabilistically about an acceptable range of variability in a statistic’s value based 
on its sampling distribution, while the other tended to acknowledge sampling vari-
ability, but focused instead on the differences between sample and sampling statis-
tics without quantifying chance.

Konold and Kazak (2008) introduced students to TinkerPlots models as ways of 
extending their inquiry about whether games—which students first played physi-
cally—were fair. Posting the outcomes of different pairs of students as they played 
each game manually highlighted sample-to-sample variability. Modeling helped 
students appreciate this variability as a result of a signal of sample space and noise 
of chance departures from the signal. In further exploration of modeling signal and 
noise, students (ages 13 and 14) participated in a simulated manufacturing process 
during a weeklong teaching experiment (Konold & Harradine, 2014). They manu-
factured “fruit sausages” composed of Play-Doh with two methods of production. 
To compare methods of production, the researchers introduced a TinkerPlots model 
of signal and random variation from target as a way of summarizing their previous 
experiences. Students critiqued the model and compared their expectations of trends 
that might arise from factors such as practice, which might lead to improvement, 
with the random error of the model as it generated fruit sausages. The student cri-
tique included concerns that the model failed to include sources of error, such as 
pressing too hard on an extruder during the production process. Nonetheless, mod-
eling provided students with ways of interpreting sample variability and distin-
guishing between trends in data anticipated from their experiences and the data 
generated by the model.

In a related context involving signal and noise, fifth- and sixth-grade students 
invented and revised models of the variability in a sample of repeated measures 
(Lehrer et al., 2007, Lehrer, Kim, Ayers, & Wilson, 2014). Students understood that 
the sample observations (the measures they collected) were composed of true mea-
sure and random error. In accord with this understanding, students constructed 
chance devices to represent the magnitudes and likelihoods of different sources of 
error they had identified, such as the propensity of measurers to leave small gaps 
when translating a ruler to measure a distance. Students combined the outputs of 
these chance devices with a constant estimate of the true measure (usually the sam-
ple median), as displayed in Fig. 7.5, and ran the model to generate simulated sam-
ples and sampling distributions of measures of center (e.g., medians) and of 
variability (e.g., IQR’s). Sampling distributions informed model fitting, and after 
judging a model as fit, students used the sampling distributions of model statistics 
to make inferences about the effects of changes in measurement processes.

Interviews were conducted at the conclusion of instruction with 12 students 
(Lehrer, 2015) and focused on sample statistics arising from claims about either 
different targets of measurement or improvements to a measurement process. Most 
students’ inferences were guided by reasoning about the probability of the sample 
statistic in light of the model-based sampling distribution of that statistic. Moreover, 
most students explicitly recognized that their decision still was uncertain—there 
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was some chance that a sample statistic could be due to chance, no matter how 
improbable that might seem, so claims about change in process were always some-
what uncertain. In this investigation, and in others with a similar focus (e.g., Manor 
Braham & Ben-Zvi, 2015), modeling variability paved the way for students to rea-
son about sample-to-sample variability and, by constructing sampling distributions, 
to consider claims amid uncertainty.

7.4  Some Directions for the Future

Considered collectively, the studies we examined establish that children are capable 
of participating productively in forms of modeling data. Modeling data positions 
students to develop multiple senses of variability and multiple means for getting a 
grip on it, in the form of visualizing, measuring, and even modeling its production. 
Even young children profit from constructing data generated in response to a legiti-
mate question, an activity that encourages children to consider and participate in 
developing relations among question, attribute, measure, and design of investiga-
tion. Some instructional settings focus on only a subset of these processes of data 
construction, but, nonetheless, children’s participation in even portions of these pro-
cesses appears to provide firsthand experience of sample variation, which is a neces-
sary ground of statistical inquiry.

Yet anticipating variability is merely preamble to considering its structure. 
Studies that engaged children in producing and critiquing visualizations (represen-
tations) of variability helped them make informal inferences that were tempered by 
variability. These findings are especially promising in light of well-documented 
challenges that both children and older students have in considering samples and 
variability. For example, children often prefer a census to a sample (e.g., Jacobs, 
1999), conduct biased sampling to ensure the collection of attributes of interest 
(Schwartz et al., 1998), and generally fail to recognize sampling variability (Rubin 
et al., 1991). To address these misunderstandings and to better align instruction with 
professional practice, it is desirable that children produce and/or use visualization 
technologies to produce representations that reveal an aspect of the process investi-
gated that was not immediately apparent to children. It is also important that chil-
dren come to understand that the qualities of the visualization are a product of 
choices made by designers. Similarly, engaging children in the invention and cri-
tique of measures of variability attunes them to relations between characteristics of 
a distribution and the measure of those qualities. Statistics may provide opportuni-
ties for children to see that measures are not confined to spatial magnitudes, as is the 
case in most elementary education.

An unresolved issue raised in our review of literature focuses on cultivating 
images of chance based on repeated processes. This is a unique contribution of sta-
tistical modeling, and three different approaches are evident in the studies we 
reviewed. One approach seeks to immerse children in the investigation of simple 
repeated processes that are familiar from textbooks on probability, such as repeated 
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throws of a die or dice, games of chance, and the like. These have the affordances of 
ready participation by children, surprising (to children) outcomes that suggest that 
chance may have structure, and relatively simple sample spaces. Digital technolo-
gies are providing new opportunities and perhaps more effective ways on capital-
izing on students’ intuitions in contexts like these. A second approach seeks to 
seamlessly integrate chance with data construction, so that chance is introduced as 
a way of explaining the variation that children experience firsthand as they construct 
data. A third approach is a kind of hybrid. It entails engaging children in the explo-
ration of simple random processes and then framing these processes as models of 
phenomena that children originally may not consider as involving chance. Each 
approach provides opportunities for children to develop representations and mea-
sures of outcomes, but more research is needed to explore the trade-offs that each 
entails. From a professional practice point of view, integration is preferred, but in 
keeping with the genetic spirit of our endeavor, integration may or may not be the 
best way to support children’s development.

The emerging focus on probabilistic modeling of variability in outcomes based 
on popular interests or on their involvement in tangible processes, such as making 
things with the intention of achieving consistent products, appears to offer children 
in the upper elementary grades a way to bridge from sample variability to sampling 
variability. The latter is a key to statistical inference, and so it is encouraging that 
preliminary explorations suggest some evidence of what Manor Braham and Ben- 
Zvi (2015) term probabilistic thinking—that is, students are able to use sampling 
distributions generated as they invent and revise models to frame the uncertainty 
involved in making even simple decisions. This is especially surprising in light of 
consistent evidence that many students do not link chance to sampling (Ben-Zvi 
et al., 2015; Schwartz et al., 1998; Watson & Moritz, 2000). But much more research 
is needed to better understand how children’s, and for that matter, older students’ 
interpretations and uses of probabilistic models are influenced by particular teach-
ing practices and by variations in phenomena being modeled.

In an era of big data and planetary scope, it nonetheless seems critical that chil-
dren’s use of data reflect their fields of inquiry, which are apt to be local. Considering 
local questions provides an opportunity to cultivate dispositions and values of data 
modeling. More developmental, long-term investigation of these issues is merited, 
especially productive pathways that lead to systematic expansion of the scope of 
inquiry to focus on socially relevant and scientifically consequential issues. It is an 
unfortunate reality that most instruction about data modeling occurs in the context 
of mathematics classrooms. Yet much of the power of data modeling is evident in 
investigations of the natural and social worlds. Indeed, much of data modeling origi-
nally arose to address challenges posed by variable outcomes in these contexts 
(Porter, 1986). The discipline-specific partitioning of children’s education works 
against this historic development. The inclusion of tools and ways of thinking about 
“big data” and about more complex systems, such as those involving covariation 
(e.g., Cobb et al., 2003; Chap. 4 this volume), and/or public participation in a vari-
ety of data modeling enterprises, such as election polls or state sponsored lotteries 
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(e.g., Rubel, Lim, Hall-Wieckert, & Sullivan, 2016), are all promising pathways for 
extending the largely univariate and more local scope of investigation typical of data 
modeling in the elementary grades. Because data modeling is of long-term value to 
participants in an ever-expanding social and material world, early entry and sus-
tained cultivation will be consequential.
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Chapter 8
Learning About Statistical Inference

Katie Makar and Andee Rubin

Abstract This chapter reviews research on the learning of statistical inference, 
focusing in particular on recent research on informal statistical inference. The 
chapter begins by arguing for the importance of broader access to the power of 
statistical inference—which, until recently, has been accessible only to those with 
extensive knowledge of mathematics—and then traces the philosophical roots of 
inference. We outline the challenges that students have encountered in learning 
statistical inference and strategies to facilitate its learning that have capitalized on 
technological advances. We describe the emergence of informal statistical inference 
and how researchers have framed the idea over the past decade. Rather than consider 
formal and informal statistical inference dichotomously, we highlight a number of 
dimensions along which approaches to statistical inference may differ, providing a 
richer perspective on how formal and informal statistical inference are related. 
Cases from classroom research aimed at primary, secondary, and tertiary levels are 
used to illustrate how informal statistical inference has shaped new ways to approach 
the teaching and learning of statistical inference. Finally, we outline gaps in research 
on statistical inference and present our speculations on its future in light of new 
research on statistical modeling and big data.
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8.1  Introduction

The focus of this chapter is on the development of educational approaches to statis-
tical inference. In particular, we discuss efforts to help students understand formal 
statistical inference, challenges to these approaches, and the development of infor-
mal statistical inference as one response to these challenges. In Sect. 8.2, we intro-
duce statistical inference as an idea and discuss the importance of providing students 
with access to the power of statistical inference. We outline philosophical roots of 
inference and how teaching and learning of statistical inference can be informed by 
a philosophical perspective. In Sect. 8.3, we include a brief overview of research on 
the learning of formal statistical inference and then focus Sect. 8.4 on the emer-
gence of key ideas of informal statistical inference that have come out of the litera-
ture in the past 10–20 years. We use case studies from the literature in Sect. 8.5 to 
highlight these issues and then conclude in Sect. 8.6 by discussing the direction of 
the field, emerging work, and recommendations for further research.

8.2  Statistical Inference: The Heart and Power of Statistics

Inference is at the heart of statistics, as it provides a means to make substantive 
evidence-based claims under uncertainty when only partial data are available. In 
this section, we begin with an overview of statistical inference and its role in the 
teaching and learning of statistics (for an introduction to statistical inference within 
the field of statistics, see Part I). Next, we argue for the necessity of broader access 
to the power of statistical inference than traditional approaches afford. This argument 
will set the context for later sections of the chapter where we outline the challenges 
and opportunities for statistical inference at both the university level and for younger 
students. This section closes with a discussion of the parallels between statistical 
inference and philosophical inference. These parallels have been used to launch new 
ways of thinking about statistical inference, including ways to provide learners with 
access to its power prior to or without more formal statistical methods.

8.2.1  What Is Statistical Inference?

Where descriptive statistics give us specific knowledge (e.g., the typical height of 
children in this class is 124 cm tall), inference gives us general knowledge (e.g., 
based on this sample of students, we estimate the average height of 7-year-old 
children in the UK to be around 124 cm). Harradine, Batanero, and Rossman (2011) 
describe statistical inference as “the process of assessing strength of evidence 
concerning whether or not a set of observations is consistent with a particular 
hypothesized mechanism that could have produced those observations” (p. 235). 

K. Makar and A. Rubin



263

More broadly, Cobb and Moore (1997) describe statistical inference as “methods 
for drawing conclusions from data about the population or process from which the 
data are drawn” (p. 813). Both of these characterizations recognize that statistical 
inference can be made both from a sample to a population and from a sample to a 
process (or mechanism) that produced the sample. In the latter case, the population 
may not actually exist at the time. For example, assessing a random sample of 
outputs from an assembly line assumes that the sample is representative of all 
outputs that have been and/or will be produced by the assembly line, within a given 
timeframe and assuming no malfunctions (see Frick, 1998, for a fuller discussion of 
inference to a mechanism). Researchers have sought to broaden meanings of 
statistical inference by examining the more colloquial meaning of the word “infer” 
and then to adapt these colloquial meanings to a statistical context. For example, 
Rossman (2008) noted that colloquial definitions of the word “infer” include not 
just the conclusion that was drawn but the evidence and reasoning on which the 
inference is made. He argued that “inference requires going beyond the data at 
hand, either generalizing the observed result to a larger group (i.e., population) or 
by drawing a more profound conclusion about the relationship between the 
variables” (p. 5). Rossman recognized the role of chance variability as “fundamental” 
(p. 6) to statistical inference. Makar and Rubin (2009) included these elements in 
their broad interpretation of statistical inference as a probabilistic (nondeterministic) 
generalization using data as evidence. Their interpretation articulated the uncertainty 
embedded in a statistical inference and recognized that the claim (generalization) 
being made goes beyond the data available and is explicit about the evidence (data) 
used to justify the inference. Researchers have also emphasized the reasoning that 
leads to a statistical inference (often called inferential reasoning) in their expanded 
interpretation of statistical inference (e.g., Garfield & Ben-Zvi, 2008; Zieffler, 
Garfield, delMas, & Reading, 2008). These ways of characterizing statistical 
inference provide for a range of approaches and perspectives, including both formal 
and informal statistical inference, a distinction we elaborate on in Sect. 8.4.

Bakker, Kent, Derry, Noss, and Hoyles (2008) contrasted traditional approaches 
to hypothesis testing with inferences that are made in the workplace, using 
techniques such as statistical process control. They claimed that the concept of 
statistical inference has meaning beyond a final statement about a population, 
broadly referring to inference:

in its general sense of drawing conclusions, including the possibly tacit reasoning processes 
that precede and support the explicit inference from a premise to a conclusion, a prediction, 
or a conjecture. The term [inference] not only includes deduction and induction, but also 
abduction. Abduction is inference to an explanation, a method of reasoning in which a 
hypothesis is formed that may explain the data. (p. 132)

Bakker and his colleagues (2008) therefore characterized statistical inference as 
being embedded in reasoning and explanations about the context in which the 
inference was being applied. By turning the focus toward the purpose and reasoning 
in statistical inference, there are opportunities to reconnect to inference as a tool for 
understanding phenomena.

8 Learning About Statistical Inference



264

8.2.2  The Importance of Access to the Power of Statistical 
Inference

Statistical inference is where the power of statistics lies. Formal methods of statisti-
cal inference allow one to make a fairly precise estimate of the output of an entire 
orchard of apples based on a careful selection of just a few trees. Inference gives 
medical research a way to make decisions about which of two treatments may be 
more effective in a population by collecting data on a study of patients. Unfortunately, 
for those without a strong foundation in the mathematical aspects of statistics, for-
mal methods of statistical inference can act as a gatekeeper for access to the power 
of statistics. Harradine et al. (2011) and others point to a multitude of concepts and 
experiences that are important for understanding statistical inference including 
using simulations to understand variability between samples, understanding the role 
of randomness in sampling, and facility with probability concepts and their links to 
sampling distributions. However, Bakker and his colleagues (2008) contend that 
statistical inferences need to be made, and are made, by those in the workplace who 
do not have a background in the foundational ideas put forth by Harradine and his 
colleagues. Therefore, access to inferential power must not only be available to 
those with a background in statistics but also extended, to some degree, to those 
who do not know—and do not plan to learn—the underlying concepts outlined by 
Harradine et al. (2011).

The importance of access to the power of statistical inference goes beyond the 
workplace. In everyday life, people make predictions about a population or process 
without having all of the data. They create estimates out of uncertain information 
and make decisions about the future based on what they know now. Recognizing the 
kinds of statistical inference that are needed in everyday contexts can help to develop 
better ways to acknowledge and improve access to reasoning from—and 
beyond—data.

Bakker and Derry (2011) described two ways in which school-level statistics 
education often fails to achieve its goals, by producing students with (1) inert 
knowledge, “knowledge that students have learned to reproduce but cannot use 
effectively” (p. 6), or (2) atomistic knowledge, separate, discrete bits of knowledge 
about individual statistical tools that students cannot relate to one another. The 
challenge, Bakker and Derry proposed, is how to sequence and build concepts to 
improve coherence and provide access to the power of statistics earlier. Bakker and 
Derry see a focus on statistical inference as one possible solution to these problems, 
providing a holistic approach to learning statistics that begins to address these 
challenges. Many countries are concerned about the decline in those choosing to 
study mathematics and statistics, an issue that has serious implications in a 
knowledge economy (e.g., Australian Academy of Science, 2006; (UK) Council for 
the Mathematical Sciences, 2004). Therefore, access to the power of statistics 
through inference could improve students’ valuing of statistics, appreciation of its 
relevance, and motivation to engage in further study. How can we make the power 
of statistical inference more accessible? We seek some inspiration from philosophical 
perspectives on inference.
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8.2.3  Philosophical Roots of Inference

Moore (1990) is often cited as distinguishing statistics from mathematics by saying 
that “data are not merely numbers, but numbers with a context” (p. 96, italics in 
original). Indeed, the purpose of statistics, and particularly statistical inference, is to 
learn something new about a context based on available (but limited) evidence. 
Philosophy has a similar aim in using inference generally to make claims based on 
limited knowledge. Philosophical inference is useful to study because it can 
highlight habits of mind and foundational ideas underpinning inferential thought, 
which may provide fresh insights into the nature of statistical inference (Hacking, 
2006; see also Nilsson et al., Chap. 11). We focus on philosophical inference in the 
context of uncertainty (as opposed to the deterministic inference used in mathematical 
logic), using the work of John Dewey (1910), who wrote extensively on inference 
in reflective thought and in inquiry. We then turn to research in statistics education 
that has drawn on philosophy to extend understandings of inference.

8.2.3.1  John Dewey’s Inference

Dewey (1910) described inference as reflective thought that relies on evidence to 
reach a conclusion. He elaborated that “the data at hand cannot supply the solution; 
they can only suggest it” (p. 12, emphasis added), such as the way that one might 
infer that it has rained overnight by examining the grass. While inferences cannot be 
made with certainty, inference is not mere whim either. Dewey suggested several 
characteristics of inquiry that can help to replace impulsive or undeveloped 
speculations, including “habits of suspending judgment till inferences have been 
tested by the examination of evidence” (p. 66), telling “where and how to seek such 
evidence” (p. 67), and acknowledging that the quality of an inference depends on 
the sample and/or cases and how they are selected (pp. 88–91). In this way, Dewey 
argued that evidence becomes part of an inference. However, he also acknowledged 
that the source of an inference may begin less formally:

Suggestion is the very heart of inference; it involves going from what is present to some-
thing absent. Hence, it is more or less speculative, adventurous. Since inference goes 
beyond what is actually present, it involves a leap, a jump, the propriety of which cannot be 
absolutely warranted in advance, no matter what precautions be taken. … The suggested 
conclusion so far as it is not accepted but only tentatively entertained constitutes an idea. 
Synonyms for this are supposition, conjecture, guess, hypothesis, and (in elaborate cases) 
theory. (p. 75)

Dewey argued that inference thus encompasses both the creative insight, which may 
be speculative, and methods to develop evidence relating to this speculation. 
Dewey’s notion of inference involved a “fruitful interaction” (p. 80) that synthesized 
“the movement toward the suggestion or hypothesis and the movement back to 
facts” (p. 81). Therefore, Dewey argued that, “The aim of inference is to terminate 
itself in an adequate judgment of a situation, and the course of inference goes on 
through a series of partial and tentative judgments” (p. 101) in a process of inquiry.
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8.2.3.2  Philosophy of Inference in Statistics Education

What lessons for statistical inference can we draw from Dewey’s philosophical dis-
cussion of inference? Dewey’s point above that inference has both a creative func-
tion and one that requires careful valuing of evidence finds a parallel in exploratory 
and confirmatory approaches to statistical inference. Embracing exploratory forms 
as an important part of inference enables us to generate new meanings. But we must 
also engage in a process of inquiry that suspends judgment while we seek support-
ing evidence and methods of “where and how.” Wild and Pfannkuch (1999) describe 
the skepticism that statisticians must use during statistical inquiry as they seek 
insight and evidence. Within statistics education research, there is renewed interest 
in reconnecting with these exploratory approaches to statistical inference, to build 
meaning-making and recognize the need for inquiry to develop critical evidence 
(e.g., Makar, Bakker, & Ben-Zvi, 2011).

In exploring the role of context in statistical inference, Bakker and his colleagues 
used philosophical writings to broaden tacit assumptions about inference. Their 
work drew on the philosophies of Brandom, Dewey, Pierce, and Polanyi to argue 
that one cannot consider an inference without recognizing the reasoning, explanation, 
and personal knowledge within the context of the inference (Bakker et al., 2008; 
Bakker & Derry, 2011; Ben-Zvi, Aridor, Makar, & Bakker, 2012; Makar et  al., 
2011). Situating a discussion of statistical inference in a philosophical perspective 
reminds us to avoid an artificial separation between statistical knowledge and the 
rich contextual knowledge needed to apply inference meaningfully (Bakker & 
Derry, 2011).

8.3  Key Ideas and Efforts to Teach Students Formal 
Statistical Inference

This section describes research on students’ difficulties grasping the ideas and tech-
niques of formal statistical inference. It highlights ongoing efforts to make the topic 
more accessible, especially approaches that take advantage of the significant 
advances in computation that have accrued over the past 20 years.

8.3.1  Types of Formal Statistical Inference

While all statistical inference is an attempt to draw a conclusion about events, quan-
tities, or situations beyond the data at hand, statisticians generally distinguish 
between two different kinds of inference: sample to population and experiment to 
causation (Cobb, 2007). The diagram in Figure 8.1 illustrates the relationship 
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Fig. 8.1 Statistical inferences permitted by study designs (from Ramsey & Schafer, 2013, as 
reproduced in Cobb, 2007, p. 3)

between these two kinds of inference, based on the distinction between random 
selection of units and random allocation of units to groups.

Most of what students encounter are examples of the first type, in which a sam-
ple is drawn at random from a population and statistical techniques are used to 
figure out what can be said about the population. Inferences about differences 
between groups are possible in such designs, as long as all samples have been 
drawn randomly, but not about what might have caused such differences. The sec-
ond type of inference is most common in medical and scientific settings, in which 
the effect of a particular treatment or intervention is being assessed. In these con-
texts, study units are not drawn at random, as they are often volunteers, but are 
assigned to treatments at random. This kind of design makes inferences about 
causes possible, but one must be cautious about generalizing beyond the sample. 
Both kinds of inference pose conceptual problems for students, although much 
more research has been carried out on difficulties students have understanding sam-
ple-to-population inference than experiment-to-causation inference (Pfannkuch, 
Budgett, & Arnold, 2015).
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8.3.2  Conceptual Difficulties in Statistical Inference

Formal statistical inference is notoriously difficult for students to master, and many 
statistics education researchers have attempted to understand the roots of this 
struggle. Generally, researchers such as Castro-Sotos, Vanhoof, Van den Noortgate, 
and Onghena (2007, p.  99) have cited the need “for students to understand and 
connect many abstract concepts such as sampling distribution and significance 
level” as a reason for the widespread lack of understanding of statistical inference. 
Other researchers have identified more specific causes that suggest potential 
alternate approaches. Many authors pointed out the general difficulty people have 
with probabilistic reasoning (e.g., Kahneman, Slovic, & Tversky, 1982; Nickerson, 
2004); Rossman (2008) quoted Stanovich (2007) as naming probabilistic reasoning 
as “the Achilles heel of human cognition” (p. 12). Rossman offered as an example 
the difficulty people have understanding statistical tendency, in contrast to the 
relative ease they have grasping a deterministic relationship. As Rossman put it, 
people “tend to ascribe deterministic explanations to chance phenomena and tend 
not to consider variability in general, and chance variation in particular” (p. 12).

8.3.2.1  Hypothesis Testing

Rossman also noted that the logical structure of Fisherian inductive inference is 
related to a particularly tricky kind of argument: modus tollens, the method of 
denying or law of the contrapositive. Modus tollens starts with a conditional 
proposition of the form “if P is true, then Q is true.” This form of argument continues 
with the observation that the data indicate that Q is not true. The final step is to 
conclude from these two premises that, therefore, P is not true. A simple example of 
modus tollens: If a dog is a Dalmatian, it has spots. This dog does not have spots. 
Therefore, this dog is not a Dalmatian.

While the Dalmatian example seems simple, Rossman argued that less familiar 
examples of modus tollens reasoning can be quite challenging. Classical statistical 
inference has this form. We create a null hypothesis (P) and then claim that if it is 
true, some other proposition (Q) will also be true. When we have evidence that Q is 
not true, that allows us to also claim that the null hypothesis (P) is not true. However, 
statistical inference further complicates this kind of reasoning by throwing in “a 
probabilistic aspect … for good measure” (p. 13). It’s not surprising that this form 
of statistical inference has proven to be a stumbling block for many students of 
statistics. There is a considerable body of research documenting students’ difficulties 
understanding the structure of modus tollens and, consequently, interpreting 
p-values (e.g., delMas, 2004; Falk & Greenbaum, 1995).

Research has identified several additional aspects of the hypothesis-testing pro-
cess that cause trouble for students. Some students conflate the null and alternative 
hypothesis or have trouble constructing an appropriate null hypothesis (Castro-
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Sotos et  al., 2007). Difficulties in understanding the meaning of a p-value are 
legion, with one common misinterpretation being that the p-value is the probabil-
ity of the null hypothesis being true (Reaburn, 2014a). Castro-Sotos et al. (2007) 
have an extensive categorization of many of these misconceptions, further illus-
trating the complexity of the logic and foundational concepts within hypothesis 
testing.

8.3.2.2  Confidence Intervals

Partly in reaction to the conceptual difficulty of hypothesis testing (but also because 
of criticism of the approach from some statisticians, e.g., Harlow, Mulaik, & Steiger, 
1997), confidence intervals have risen in popularity in the past two decades 
(Cumming, 2012; Wagenmakers, 2007). A confidence interval provides a range of 
parameter values that correspond to “plausible” populations from which the random 
sample might have been drawn, given a probabilistic definition of “plausible” 
(Reaburn, 2014b). Proponents of the use of confidence intervals point out advantages 
of this way of indicating the results of statistical inference over hypothesis testing, 
including: confidence intervals are in the same units as the point estimate; the width 
of the confidence interval indicates the precision of the estimate; and confidence 
intervals avoid the problematic logic of hypothesis testing.

While they may have certain advantages over hypothesis testing, confidence 
intervals are not transparent, either, and research has pointed out that they, too, are 
commonly misinterpreted by both students and scientists (Belia, Fidler, Williams, & 
Cumming, 2005). The majority of university students studied by delMas, Garfield, 
Ooms, and Chance (2007) at the end of an introductory statistics course thought that 
the level of confidence (e.g., 95%) indicated the percentage of all sample means that 
would lie within the confidence interval, rather than the probability that the 
confidence interval included the true mean. Reaburn (2014b) replicated this finding 
and described other common misconceptions about the confidence interval among 
tertiary students.

8.3.2.3  Additional Barriers to Understanding Statistical Inference

Other researchers have identified even more basic statistical concepts that are poorly 
understood by students (e.g., see Biehler et al., Chap. 4)—and, thus, impede their 
understanding of statistical inference. These include the concepts of distribution 
(Bakker & Gravemeijer, 2004), variation and covariation (Cobb, McClain, & 
Gravemeijer, 2003), sampling distribution (Saldanha & Thompson, 2002), sampling 
variability (delMas, Garfield, & Chance, 1999), and the idea that an aggregate value 
such as the mean or median can be used to compare distributions (Konold, Higgins, 
Russell, & Khalil, 2015; Konold & Pollatsek, 2002).
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8.3.3  Attempts to Make Inference More Accessible

Given the documented difficulty of formal approaches to statistical inference—and 
concurrent with the increased availability of computational resources—statistics 
educators have come up with alternate approaches to inference that rely on being 
able to repeat a randomization procedure many times and keep track of the outcomes 
to determine the likelihood of a particular result. This method was described 
concisely by Cobb (2007) as “the three R’s: randomize, repeat, reject” (p. 12). In 
slightly less telegraphic terms, his method can be elaborated to (1) randomize data 
production, (2) repeat by simulation to see what’s typical, and (3) reject any model 
that puts your data in the tail. Cobb’s “randomize” recommendation can be carried 
out in two different ways. In one approach, called bootstrapping, data are generated 
by repeated random resampling with replacement from a sample. In the other, called 
the randomization or permutation test, data are randomly reassigned to groups so 
that a comparison between groups can be made. Cobb’s paper details a long list of 
reasons (e.g., the simplicity of the model and its match to the production process) 
why this approach is preferable to the more traditional approaches, which, he 
claimed, were the only option available before computers “made it possible to solve 
the problem directly” (p. 12). The randomization approach works equally well for 
the two kinds of inference described at the beginning of this section—sample to 
population (via bootstrapping) and experiment to causation (via the permutation 
test)—and it is becoming widely used in statistical practice (Hesterberg, Moore, 
Monaghan, Clipson, & Epstein, 2009).

Teaching about inference using randomization is a relatively new approach, but 
it has been enthusiastically embraced by some statistics educators and several 
curricula embodying its principles have been developed (Garfield, delMas, & 
Zieffler, 2012; Lock, Lock, & Morgan, 2012; Tintle et al., 2014). One group has 
developed a set of computer tools, called Visual Inference Tools (VIT) that support 
students in using visual reasoning to construct an understanding of the process of 
re-randomization and the inferences one can derive from it (Budgett, Pfannkuch, 
Regan, & Wild, 2013; Budgett & Wild, 2014; Wild, Pfannkuch, Regan, & Parsonage, 
2017). Encouraging results have begun to appear as more people adopt Cobb’s 
(2007) recommendations to use randomization methods as the basis of teaching 
inference. Budgett and Wild (2014), for example, reported that a course incorporating 
the VIT re-randomization module helped both university students and workplace 
students develop a basic understanding of the three R’s process relatively quickly. 
They conjectured that these visual tools are especially effective when preceded by 
hands-on activities that demonstrate what the computer automates (i.e., randomly 
assigning group labels to the data points). In a cautionary note, the authors pointed 
out that even students who were able to carry out the randomization test fluently had 
trouble interpreting the tail proportion. In a related study using VIT, Pfannkuch and 
Budgett (2014) analyzed two university students’ use of the tools to carry out both 
bootstrap confidence interval construction and the randomization test after an 
introductory course that used these tools. They noted that, in the context of the 
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course, the tools appeared to facilitate students’ development of statistical inferential 
concepts.

Tintle and his colleagues (Tintle et  al., 2014; Tintle, Topliff, VanderStoep, 
Holmes, & Swanson, 2012; Tintle, VanderStoep, Holmes, Quisenberry, & Swanson, 
2011) provided some of the only quantitative assessments of a randomization 
curriculum; their data showed that university students who were taught using 
randomization methods showed better understanding of basic statistical concepts 
than students taught with traditional methods. This improvement continued through 
a second test 4 months later, providing evidence of long-term understanding. Similar 
positive results were also found at different tertiary institutions with different faculty 
teaching the course. So, while research is still in the early stages, there is reason to 
be optimistic about the increased accessibility of ideas about statistical inference 
using a randomization approach.

8.4  Informal Statistical Inference as an Alternate Approach 
to Inference

Another approach to making statistical inference more accessible has drawn on 
informal approaches. As informal statistical inference has gained acceptance, its 
role has broadened from being primarily a path to formal statistical inference to 
include exploratory methods of analysis. In this section, we discuss the roots of 
informal statistical inference within exploratory data analysis, its emergence as a 
focus of research a decade ago, and shifts that have occurred within this research. 
We close this section with a discussion of several dimensions along which informal 
and formal statistical inference may differ.

8.4.1  Historical Background: Emergence from EDA

The focus on informal statistical inference was motivated by an impulse similar to 
the ideas that led to the creation of exploratory data analysis. Exploratory data 
analysis (EDA) was developed by John Tukey (1977) as a contrast to the more 
procedural confirmatory techniques that had dominated the field of statistical 
analysis until then. As Ainley and Pratt (2001) describe it, “EDA is concerned with 
organizing, describing, representing, and analyzing data, and makes extensive use 
of visual displays” (p.  5). Shaughnessy, Garfield, and Greer (1996) outlined the 
history of data handling, placing EDA at the center of a change in focus from 
statistical formula toward greater visualization, multiple forms of representation, 
and investigation of data. EDA provided approaches to exploring data without a 
need for sophisticated theoretical principles that relied on probability theory (Ben- 
Zvi & Arcavi, 2001; Prodromou & Pratt, 2006). It provided practical empirical tools 
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that allowed a data investigator to visualize and explore data without assigning 
probabilities to findings. Part of Tukey’s goal in developing EDA was to challenge 
the myth of simple linearity of the dominant confirmatory paradigm, where a ques-
tion led seamlessly to a design, data collection, data analysis, and a clear answer 
(Tukey, 1980, p. 23). He claimed that this linear formulation of statistical inquiry 
hid the fact that neither the questions that launched the analysis nor the answer that 
finished it could be plucked from a context as a “tidy” (p.  24) bundle. Before a 
hypothesis could be written and confirmed, Tukey pointed out, a lot of digging was 
needed to find the insights in the data that were worth following up. He bemoaned 
the subsequent reduction of EDA to a few new data visualization tools: “Exploratory 
data analysis is an attitude, a flexibility, and a reliance on display, NOT a bundle of 
techniques, and should be so taught” (p. 23).

Although EDA has been available and widely accepted since the 1970s, techno-
logical advances in the past decade have resulted in more innovative tools for analy-
sis based on visualization and simulation (Biehler, Ben-Zvi, Bakker, & Makar, 
2013). These tools provide ways to manage more complex data sets, allowing 
students’ statistical investigations to take on practices that more closely mirror the 
work of practicing statisticians (Wild & Pfannkuch, 1999). However, even as EDA 
was becoming more popular and easier to carry out, some statisticians and statistics 
educators expressed the concern that EDA loosened the connections between chance 
and data (Biehler et al., 2013; Pratt, 2011). On the one hand, EDA freed statistical 
analysis from the mathematical tedium of probability, but at the same time, it 
disconnected data analysis from the foundational concept of uncertainty. EDA- 
based explorations of data were often, therefore, descriptive in nature—they told the 
rich stories of the data that were collected but lost some of the power of statistics to 
extend beyond the data to uncertain claims about the population or process from 
which they were created. Informal statistical inference emerged as a way to build on 
the spirit of EDA while reclaiming the links between data and chance.

8.4.2  Emergence of Research on Informal Statistical Inference

Until three decades ago, research on statistical inference was largely focused at the 
university level. At that time, research took the standard university statistics 
curriculum as a given and studied how students reasoned (usually how their 
reasoning fell short) in the context of that curriculum. Konold (2007) noted five 
significant changes in the focus of statistics education research in the past 30 years, 
due to:

 1. New understandings about student learning and children’s capabilities
 2. Concerns about meeting the statistical literacy needs of citizens now and in 

the future
 3. Changes in school curricula, incorporating more experiences with data analy-

sis from a young age
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 4. Technological tools that moved from number crunching to data visualization
 5. Questioning the “core” ideas in statistics and probability

Konold argued that this reframing of core ideas has led to a revolutionary change 
in instructional design in statistical reasoning from developing “top down” to 
building “bottom up”:

Bottom-up instructional design … takes into account not only where we want students to 
end up, but also where they are coming from. Earlier approaches, in contrast, emphasized a 
top-down approach in which the college-level course—taken as the ultimate goal—was 
progressively stripped down for lower grades. … The objectives and content at a particular 
level are thus whatever was left over after subjecting the college course to this subtractive 
process. So grades 3–5 get line graphs and medians, grades 6–8 get scatterplots and means, 
and grades 9–12 get regression lines and sampling distributions. (p. 270)

The proliferation of work on informal statistical inference could be considered one 
result of this change in perspective. Once seen primarily as a method to facilitate 
high school and college students’ transition from descriptive statistics to formal 
statistical inference (e.g., Garfield, Le, Zieffler, & Ben-Zvi, 2015; Zieffler et  al., 
2008), informal statistical inference is now commonly introduced to children and 
nonspecialist adults as a legitimate topic of its own (e.g., Bakker et al., 2008; Ben- 
Zvi, 2006; Makar, 2014; Meletiou-Mavrotheris & Paparistodemou, 2015). With 
these less technically oriented groups, the pedagogical aims are to develop coherence 
in their statistical ideas, give them earlier access to the power of statistical inference, 
and make connections between statistics and familiar contexts (Makar, 2016).

In response to the research described above, as well as influences from mathe-
matics education, statistics education research conferences between 2000 and 2008 
(especially the International Collaboration for Research on Statistical Reasoning, 
Thinking, and Literacy (SRTL) workshop but also the International Conference on 
Teaching Statistics (ICOTS) and the US Conference on Teaching Statistics 
(USCOTS)) began to include discussions of possible alternative approaches to 
teaching statistical inference. A shared pedagogical goal of these efforts was to har-
ness students’ informal reasoning strengths in constructing their understanding of 
formal statistical inference. Zieffler et  al. (2008) posed the important question: 
“How can students’ informal knowledge best be utilized in formal instruction [about 
statistical inference]?” (p.  42). Several groups of researchers have attempted to 
answer this question by engaging students in activities that focus on some critical 
aspects of statistical inference but strip away others. Some of the early frameworks 
for informal statistical inference include Ben-Zvi (2006); Makar and Rubin (2009); 
Pfannkuch (2006); Rubin, Hammerman, and Konold (2006); Rossman (2008); and 
Zieffler et al. (2008). While there are differences among these frameworks, several 
key common themes have emerged in describing informal statistical inference—
claim beyond the data, expressed with uncertainty, use of data as evidence, 
consideration of the aggregate, and integration of context knowledge. Each of these 
is explained below.

Claim beyond the data. There is universal agreement that a key aspect of infor-
mal statistical inference is a claim that “goes beyond the data at hand” (Rossman, 
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2008, p.  5). Some authors have focused specifically on making claims “about 
unknown populations based on observed samples” (Zieffler et al., 2008, p. 44), and 
others have written more generally about “drawing conclusions from data … by 
comparing and reasoning from distributions of data” (Pfannkuch, 2006, p. 1). Pratt, 
Johnson- Wilder, Ainley, and Mason (2008) noted that teachers and learners are 
often unclear when they are talking about the sample at hand (which they call 
“Game 1”) and when they are talking about a larger unknown population (which 
they call “Game 2”). Many curriculum situations are actually examples of Game 1, 
as they ask students to reason only about data they have available (e.g., find the aver-
age height of students in our classroom). These activities could easily be extended 
to require students to consider what existing data mean about other as-yet-uncol-
lected data, but few curricula take this step to Game 2.

Expressed with uncertainty. A second common theme in most descriptions of 
informal statistical inference is the presence of uncertainty. Statistical inference 
always involves some kind of probabilistic reasoning, since it comprises a claim 
about an unknown quantity, based on a known sample. In informal statistical 
inference, these expressions of uncertainty are not necessarily formal probabilistic 
statements but may be less precise or even qualitative. For younger students 
especially, stating that a sample is more likely to come from one population than 
another without quantifying the probabilities may be sufficient. Young students may 
only be able to distinguish a few levels of uncertainty and have trouble assigning 
any numerical values to them, but as they gain experience, their ability to recognize 
more subtle distinctions in uncertainty increase (Ben-Zvi et al., 2012).

Use of data as evidence. Makar and Rubin (2009) identified as a third component 
of informal statistical inference the key role of data as evidence for a claim. Being 
able to use data as evidence is a skill that develops over time, and young learners 
may have difficulty figuring out what the data they have collected mean about the 
question under investigation. Wild and Pfannkuch (1999) included recognition of 
the need for data as one of their central elements of statistical thinking, yet the 
connection between data and claims is often not made explicit for students (Fielding- 
Wells, 2010; Hancock, Kaput, & Goldsmith, 1992).

Consideration of the aggregate. Other authors have highlighted the critical role 
that aggregate measures such as the mean and median play in inference (Rubin 
et al., 2006). Inferences are made using aggregate measures of center, variability, 
shape, or covariation (Aridor & Ben-Zvi, in press), not individual data points. 
Reasoning about aggregates leads to consideration of signal (constant causes that 
are reflected in aggregate quantities) and noise (variable causes that introduce 
variability around a signal). Recent research (e.g., Konold et al., 2015) has reported 
that students often have trouble focusing on aggregate qualities of a distribution 
rather than on individual data points, so some efforts at increasing students’ 
understanding of inference have emphasized helping them to conceptualize 
aggregate measures.

Integration of contextual knowledge. Another key issue that has received atten-
tion in literature on informal inferential reasoning is the role of context. Langrall, 
Nisbet, Mooney, and Jansem (2011), for example, compared the level of statistical 
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and inferential reasoning among students with different levels of contextual knowl-
edge relevant to data they were analyzing. Their study showed evidence that stu-
dents with knowledge about a context tended to provide greater depth of informal 
inferential reasoning than those without knowledge of the context. The importance 
of context knowledge has been highlighted by several studies of students’ informal 
inferential reasoning (e.g., Dierdorp, Bakker, Eijkelhof, & van Maanen, 2011; Gil 
& Ben-Zvi, 2011; Madden, 2011). Makar and her colleagues (2011) explained that 
informal inferential reasoning is facilitated by an understanding of the problem 
context, access to statistical tools and concepts, and an inquiry-based environment.

8.4.3  Is It Formal or Informal Inference?

Since the introduction of the term “informal statistical inference” in the early 2000s, 
there has been considerable discussion about what makes a particular type of 
statistical reasoning “informal” or “formal.” There is little question about some 
kinds of procedures; for example, the use of formulas or computation to carry out a 
t-test and determine a p-value is clearly an example of formal statistical inference. 
Similarly, most people would agree that young children claiming, based on the 
colored counters they have drawn out of a can, that they are pretty sure there are 
more red ones than blue ones is an example of informal statistical inference. But 
there are many examples that are much less clear-cut. For example, are randomization 
tests formal or informal? The perspective we take in this chapter is that there is 
actually a continuum of approaches to inference ranging from clearly informal to 
clearly formal, with many gradations in between. In taking this position, we are also 
stating that debates about whether particular approaches are formal or informal are 
not useful; rather, we should be studying what range of approaches are most 
beneficial for helping students appreciate and master the power of statistical 
inference. Garfield and Ben-Zvi (2008) take a similar approach in suggesting a set 
of activities that range along the formal-informal continuum to build students’ 
understanding of inference.

One attempt to get more specific about “informality” was made by Zieffler et al. 
(2008), who described informal knowledge in the context of informal statistical 
inference as a combination of two kinds of information: (1) knowledge gained 
outside of school from life experience and (2) “less formalized” versions of topics 
gained from prior instruction (p. 42). This conception is useful in pointing out that 
informal knowledge may come from either life or school—but it is also somewhat 
recursive, as it describes informal primarily in contrast to formal. It leaves open the 
question of determining when reasoning crosses the line from formal to informal.

Rather than trying to answer this question by defining a specific point at which 
formal become informal, we take the position that it may actually not be helpful to 
label approaches as formal or informal. Instead, we propose a number of dimensions 
along which the complexity of statistical inferential reasoning—and the ways in 
which students learn about it—tends to vary. While the five dimensions listed below 
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are themselves described as dichotomous, we see them as continua with many 
points between the extremes articulated. In addition, any individual approach to 
teaching about statistical inference is actually a set of choices, each of which may 
lie at a different point on the continua. For example, one approach might favor 
quantitative over qualitative description while relying on visualization over 
formulas:

Quantitative/qualitative: Many statistical inference methods quantify the likeli-
hood of an outcome, as they involve deriving an explicit probability that the observed 
result could have happened by chance. Other, more qualitative approaches may 
involve judgments that an observed result is “surprising” or “unlikely” or that one 
result is more or less likely than another, without the assignment of numerical val-
ues to these probabilities.

Closed-form formulas/simulation: Traditional statistical inference is based on 
closed-form formulas, made possible by simplifying assumptions about underlying 
theoretical distributions. Newer approaches take advantage of computational power 
to estimate the probability of a result through repeated simulations, an approach 
that does not require the same simplifying assumptions that traditional methods do. 
These computationally based methods are not derived using traditional algebraic 
manipulation, yet they are becoming more accepted as standard statistical 
practice.

Diversity of images of distributions: Many textbook explanations of traditional 
statistical inference rely on a single iconic image of a theoretical standard normal 
distribution, with mean and standard deviation indicated (0 and 1, respectively) and 
0.05 and 0.01 tails shaded. Other approaches tend to have more pictures, illustrating 
empirical data distributions, often non-normal, with superimposed visualizations 
such as box plots to help highlight the shape, central tendency, and variability of 
these data.

Choices of measures of central tendency and variability: To take advantage of 
mathematical methods available for the normal distribution, traditional statistical 
inference used mean and standard deviation as measures of central tendency and 
variability, respectively. Approaches to statistical inference using measures such as 
median and IQR (which do not assume that a distribution is normal) are becoming 
more widely accepted.

Community acceptance: Traditional formal statistical inference is accepted as 
valid and official in the statistical and scientific communities, even though it is 
recognized that an idealized normal distribution model is often not a good match to 
empirical data. Informal approaches to statistical inference are sometimes more 
idiosyncratic and individual and may not be accepted in the wider community. Thus, 
some approaches that are currently viewed as informal because they are not part of 
the mainstream may become “more formal” as the statistical, scientific, and 
educational communities shift in their adoption of inferential techniques.

In the next section, we describe several examples of teaching and learning infor-
mal statistical inference, which themselves vary along several of these dimensions.
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8.5  Illustrations of Informal Statistical Inference

In this section, we describe cases of teaching and learning to illustrate key findings 
in developing inferential thinking through informal statistical inference. Because 
students at different levels are expected to apply different kinds of reasoning, we 
include separate cases that reflect thinking at the primary school, secondary school, 
and tertiary levels. Our secondary school example highlights teachers’ reasoning as 
an example of the kinds of insights that are accessible to students in middle and high 
school.

8.5.1  Primary School Example of Informal Statistical 
Inference: Experiencing Powerful Statistical Ideas

The aim in primary school is not to move children toward formal statistical infer-
ence, but rather to capitalize on their everyday experiences with predictions, provide 
access to powerful statistical ideas, and create coherent opportunities to develop 
statistical reasoning (Makar, 2016). Although they have not yet learned descriptive 
statistics, it is beneficial “to elaborate the conceptual struggle that needs to take 
place for young students to engage in inferential reasoning” (Pratt et  al., 2008, 
p. 108). We illustrate this with a case study (Fielding-Wells & Makar, 2015) from a 
Year 3 (aged 7–8 years) primary mathematics class in Australia to highlight how 
key ideas from informal statistical inference appeared in students’ reasoning—mak-
ing a claim beyond the data, expressing the claim with uncertainty, using data as 
evidence for the claim, working with data as an aggregate (distribution), blending 
chance and data, and integrating statistical reasoning with contextual knowledge.

In this study, the children were responding to the question, “What is the best card 
for winning addition bingo?” Addition bingo is played by placing all combinations 
of the sum of two numbers (from 1 to 10) on individual slips in a box and drawing 
them out one by one. Children mark off each sum if it appears on their 5 × 5 bingo 
card. For example, if the teacher drew out “4 + 7,” then children crossed off one (and 
only one) occurrence of 11 if it appeared on their card. To investigate their reasoning, 
children were asked to fill in numbers for the 25 spaces of a blank bingo card to try 
and maximize their chances of winning (crossing off all 25 numbers on their card).

As the children played the game, they kept track of the numbers that were pulled 
out of the box and used these data to investigate strategies for selecting numbers for 
their card that would increase their chances of winning the game. The game therefore 
allowed them to make informal statistical inferences (Makar & Rubin, 2009) within 
a practical context because (1) their predictions (in the form of an addition bingo 
card) went beyond the data generated in each game—that is, the prediction aimed to 
create a card that would apply to current and future plays of the game; (2) most 
predictions (beyond the first game) were based on their experience with data from 
the game as evidence; and (3) predictions were expressed with uncertainty as they 
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could not be certain their card would win. Although students initially considered 
individual numbers when playing the game, they began to realize the utility of using 
a distribution (aggregate) as a tool for selecting the numbers to put on their bingo 
card.

Addition bingo is a different context to learn probability than working with 
coins, dice, and spinners because unlike these contexts, the underlying distribution 
is unknown to the children. That is, there was no way for them to “check” if their 
solution was correct; the quality of their response depended on their reasoning to 
justify their conclusions with evidence. Although the formal terminology was not 
explicitly introduced, the game created opportunities for students to build a sample 
space, create and compare theoretical and empirical distributions, calculate 
probabilities of outcomes, and articulate informal inferential reasoning.

In their first attempt at creating a winning addition bingo card, most children 
expected outcomes of the game to be equally likely. Although this was not the best 
model for the data, these expectations were based on informal inferential reasoning 
because they represented the students’ predictions beyond their own cards to the 
process that generated the data for every game. Children listed the numbers 2–20 on 
their cards plus a few “lucky” numbers to fill in the extra spaces. This equiprobability 
bias was challenged when the game was played, as several outcomes had multiple 
frequencies (e.g., there are five possible slips with a sum of 6), while others never 
appeared at all. To investigate why numbers were appearing multiple times, the 
students employed a variety of strategies, including dumping the slips of outcomes 
from the box onto the floor and tallying them (Fig. 8.2, top left), writing the possible 
ways to generate each sum from 1 to 20 as a narrative (top right), filling in an 
addition chart (not shown) and then counting the frequency of each outcome, or 
organizing their findings on a number line (bottom). The teacher helped the class 
create an addition chart (forming a sample space) to discuss expected relative 
frequencies. This sample space graphed as a dot plot (which they called “Paul’s 
mountain,” Fig. 8.2, bottom) became a representation students adopted to describe 
the possible outcomes of the game.

Students often overestimated expected frequencies in subsequent iterations of 
play. In critiquing a peer’s choice of putting four 16s on her card, one student, Jess, 
argued that 16 was unlikely to occur that often:

Well, I’m not trying to be mean to Lorena or anything, but like 16 isn’t a really popular 
number so it might not come out as much as four times. It could, but it sort of like, is only 
a possible chance of 16 coming up.

In Jess’ articulation, she used informal inferential reasoning to claim that 16 was 
unlikely to be called out, emphasizing her claim with uncertainty: “it could, but it 
… is only a possible chance.”

When the numbers pulled from the box in multiple games were combined on the 
board (Fig.  8.3), students noted how the data they collected differed from their 
expectation (a triangular shape like “Paul’s mountain”). Although the children 
didn’t understand the formal probability and statistics concepts behind the problem 
(e.g., sample space, expected values), they were using similar ideas at a level 
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Fig. 8.2 Students’ strategies to develop evidence for the frequencies of outcomes

appropriate to their age to articulate their informal inferential reasoning. Fielding- 
Wells and Makar (2015) cautioned that not all children reasoned from the distribution 
(aggregate) and some persisted with relying on “lucky” numbers in creating their 
addition bingo cards. These children were less successful in playing the game, and 
it was hoped that they would at some point in their schooling learn to trust the 
distribution to change their beliefs about luck and randomness.

Researchers outside of statistics have argued that young children should 
encounter powerful mathematical ideas, even if the children don’t yet understand 
all of their details or implications of the ideas (e.g., Mulligan & Mitchelmore, 
2013). The experiences in Fielding-Wells and Makar’s (2015) study exposed chil-
dren to problems that required informal statistical inference, providing them with 
opportunities to informally work with powerful statistical concepts and structures. 
The experience challenged the children’s equiprobability bias (Lecoutre, Durand, 
& Cordier, 1990) and moved them toward meaningful, age appropriate exploration 
of distributions and aggregate reasoning. Furthermore, because the context was 
one that involved informal statistical inference, it integrated data and likelihood 
through informal versions of probability and statistical concepts—sample space, 
sampling variability, empirical and theoretical probability distributions, and calcu-
lations of probability—around a meaningful problem in coherent ways (Bakker & 
Derry, 2011).
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8.5.2  Middle/High School Example of Informal Statistical 
Inference: Using Aggregates to Support Inference

The following example is from the Visualizing Statistical Relationships (ViSOR) 
research project, in which middle and high school teachers investigated how 
statistical visualization tools could support their own and their students’ 
understanding of statistical reasoning (Rubin et al., 2006). It illustrates an emerging 
understanding of informal statistical inference that is accessible to middle and high 
school students using appropriate visualization tools, extending informal inferential 
reasoning beyond the primary grades example in Sect. 8.5.1 in several ways: in its 
explicit use of aggregate values, a recognition of the co-occurrence of signal and 
noise, and in relatively more sophisticated reasoning about variability. It also illus-
trates an example of inference from a sample to a process, rather than to a finite 
population.

A computer tool is central to this example: teachers used TinkerPlots (Konold & 
Miller, 2005) to explore data about variability in a process. The following story and 
accompanying data set were developed by Konold (2005):

Figure 8.4 is a TinkerPlots graph that many teachers created early in their analy-
sis by first plotting the case number, which corresponds to the order in which the 
measurements were collected, on the horizontal axis and the output (brushes per 
two minutes or bptm) on the vertical axis. They then divided the points into hour-
long “bins,” each of which contains all 30 data points for that hour; each bin is 
labeled by its hour, beginning with “eight” (PM) and continuing through “five” 
(AM). Within each bin, however, the points are no longer ordered by time.

• The Mus-Brush Company produces mushroom brushes, using a machine 
whose normal output is on average 215 brushes every 2 min. Output is 
recorded in terms of the unit “bptm,” which stands for “brushes per two 
minutes.”

• If the electricity to the machine is interrupted, even briefly, it will slow 
down, and the output of the machine will be 10% lower on average.

• The Mus-Brush Company was robbed last night; in forcing the door open, 
the thief disrupted the electricity, and the machine became less productive 
from that time on.

• There is a suspect who has an alibi between midnight and 3 AM, so the 
police want to know if the break-in occurred before midnight or after 3 AM, 
since the suspect has no alibi for those times.

• We have data on Mus-Brush production every 2 min from 8 PM until 6 AM. 
Our job is to decide whether there is enough evidence to argue that the 
break-in occurred between 12 and 3, thus freeing the suspect.
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To get a sense of trends in the data, many teachers colored the points on the graph 
according to their output value. Points that represented low output (less than 183 
bptm) were colored blue, those with medium output were purple (from 183 to 229 
bptm), and those with high output (greater than 229 bptm) were green. One pair of 
teachers noted, in examining this graph, that there were no high outputs in hours 
three (from 3:00 to 4:00 AM) and four (from 4:00 to 5:00 AM) and that those 2 
hours also had the most low outputs. This led them to hypothesize that something 
happened between 2:00 and 3:00 in the morning, just before the hours in which they 
saw lower output.

These first two analysis moves are interesting in that teachers created representa-
tions that ignored some of the details of the data. Grouping the data into bins created 
ten distributions rather than a single time series, and coloring the data by high/
medium/low created three categories rather than a range of individual values. A 
plausible interpretation is that the teachers visualized the data in chunks in recogni-
tion of the inherent variability of the process, hoping to see general trends over time, 
rather than changes from one data point to the next. These moves could indicate an 
appreciation for the importance of both signal and noise, as they present the data in 
a way that may make the signal more discernable.

To investigate their hypothesis that something happened during the hour from 
2:00 to 3:00, these teachers added the means of each hour’s production to the graph, 
looking for what they would consider a “significant” drop between one hour and the 
next. In Fig. 8.5, the mean output for each hour appears as a blue triangle to the left 
of the corresponding bin. For example, the mean production for the 8 o’clock hour 
is at the far left of the graph, around 220 bptm. On Fig. 8.5, teachers focused on the 
means of hours one and two and noted that there was a large drop between them. 
They reasoned that the machine was operating at full capacity during hour one but 

Fig.  8.3 Outcomes of multiple games combined on a number line (dot plot) with expectations of 
the shape of the data superimposed above it (dotted line)
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began to operate at a reduced capacity during hour two and that, thus, the break-in 
occurred during hour two—i.e., before 3:00.

Other teachers used Fig. 8.5 to make a different argument. They noticed that the 
mean of hour two was 201 bptm, that of hour three was 196 bptm, and that of hour 
four was 191 bptm, a drop of 5 bptm each hour. This made it seem possible that the 
machine was operating normally until 3 AM and then began to operate at a reduced 
capacity during hour four. To decide whether it was more likely that the break-in 
occurred during hour two or during hour four, the teachers decided to look at the 
data in half-hour chunks, as in Fig. 8.6, to see if there was a more obvious change in 
mean production at this grain size. They argued that if the break-in occurred in the 
middle of some hour, the mean of the hour during which it happened would be an 
average of both normal operation and reduced operation and would thus not show 
the significant drop that would indicate a break-in.

In Fig. 8.6, one teacher found what she had hoped to see. The mean production 
between 2:00 and 2:30 was 207 bptm, reasonably close to the 215 “normal” value. 
But between 2:30 and 3:00, it dropped to 195 bptm. The arrows in Fig. 8.6 indicate 
these half-hour means. This change is larger than any other drop between two con-
secutive half hours, and the mean production continues to vary around 193 bptm 
after this time, about 10% less than normal production. The teacher therefore rea-
soned that the break-in most likely occurred around 2:30, at the boundary between 
the two half hours.

This series of graphs and the reasoning that accompanied them illustrate several 
important aspects of informal statistical inference. First, there is evidence of a deep 

Fig. 8.4 Machine output separated into hour bins, colored by low, medium, and high output
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understanding of the ubiquity of variability. One teacher observed of Fig. 8.6, “The 
mean seems steady between 11:30 pm and 2 am,” when, in fact, the mean varies 
between 206 and 217 during that time. We consider this plausible evidence of their 
comfort with variability, at least in the context of a process whose variation seems 
natural. Because the Mus-Brush context involves inference to a process rather than 
a population, it may be a context in which it is easier for students and teachers to see 
signal and noise as coexisting aspects of a phenomenon.

The teachers’ reasoning also provides evidence that they recognized the utility 
of an aggregate measure of central tendency (in this case, the mean) as an indication 
of a signal in the presence of noise. TinkerPlots facilitated this use of the mean as 
an indication of signal in two ways. First, since the value of the mean was visually 
displayed on the graph, a pattern in means over time was relatively easy to notice. 
Second, it is easy in TinkerPlots to change the width of bins in a graph (as in going 
from Fig.  8.5 to 8.6), with the values of the bin means being updated 
automatically.

Fig. 8.5 Data (with means marked) of each hour’s production
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In sum, we note that, while these teachers did not measure variability in any 
quantitative way or carry out any significance tests, their understanding of the roles 
of variability, aggregate measures, and trends in statistical inference is statistically 
sophisticated and could provide a useful basis for more formal techniques.

8.5.3  Tertiary Examples of Informal Statistical Inference: 
Using Simulations and Randomization

Recently, informal approaches have been increasingly used at the tertiary level to 
improve students’ grounding in statistical ideas prior to or in conjunction with more 
formal procedures (e.g., Garfield et al., 2015; Pfannkuch et al., 2015; Ramsey & 
Schafer, 2013). We therefore look at research on informal statistical inference in this 
section as coming full circle. That is, many of the studies currently undertaken on 
informal statistical inference at the university level do not begin with formal descrip-
tive statistics, the central limit theorem and sampling distributions (top- down, 
Konold, 2007), but rather start with university students’ conceptions of data and 
randomness (bottom-up) and develop their informal inferential reasoning from that 
basis. In this section, we briefly describe two cases that immerse students in informal 
aspects of statistical inference using simulations. The first is from the US CATALST 
group who use informal statistical inference and simulations to introduce hypothesis 
testing. The second is from a research group in New Zealand who use visualization 
tools to improve students’ access to inference with randomization tests.

Fig. 8.6 Graph showing mean production in half-hour intervals
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8.5.3.1  Tertiary Case 1: Using Simulations to Transition to Hypothesis 
Testing

Researchers from the CATALST group based their approach to developing statisti-
cal inference on a modeling perspective that incorporated simulation, resampling, 
and the core logic of inference (Cobb, 2007). Their aim was to develop students’ 
initial understandings of the logic of inference by beginning with informal statisti-
cal inference. Prior to introducing formal methods of hypothesis testing, the intro-
ductory university course developed by CATALST engaged students in solving 
problems that required inferring from simple theoretical models and/or simula-
tions. The course used activities that built on students’ prior knowledge about sam-
pling and sampling variability to generate potential models to solve and justify 
their solution to each problem (delMas, Garfield, & Zieffler, 2014; Garfield et al., 
2012, 2015).

Throughout the course, students were asked to engage in the sequence—model, 
randomize and repeat, and evaluate—for problems of increasing complexity and 
formality. At each level, students used software to create a theoretical model (often 
after an initial experience with physical coins or dice), repeatedly collected random 
samples from the model, and then evaluated the “unusualness” of a particular out-
come of interest (delMas et al., 2014). For example, students discussed whether it 
was reasonable to obtain ten heads from ten tosses of a fair coin. They tested their 
prediction by simulating 100 trials of the experiment and calculating the relative 
frequency of obtaining 10 out of 10 heads from the resulting empirical sampling 
distribution. Figure 8.7 shows an example of this simulation in TinkerPlots with the 
model of the coin (top left), table and graph of the outcomes of a single trial of 10 
coins (center and top right), and, finally, the table and graph of the distribution of 
number of heads obtained from 100 trials of 10 coin tosses (bottom). In this 
simulation, there were no occurrences of 10 heads out of 10 coin tosses and just one 
occurrence of 9 heads in the 100 repetitions of 10 coin tosses (bottom right).

By assessing their speculation against the data distribution, students gained valu-
able insight into the utility of the model—and the data as evidence—for making 
claims beyond the data. In rerunning the simulation, they gained an informal sense 
of sampling variability, which allowed for important discussions about the differ-
ence between the population (theoretical model), a sample (10 coin throws), and a 
sampling distribution (100 sets of 10 throws). These initial informal experiences 
provided key contextual links to distinguish these concepts, ideas that research has 
documented as difficult (Castro-Sotos et  al., 2007; Chance, delMas, & Garfield, 
2004). The next unit of the CATALST course had students simulate the difference 
between treatment and control groups. The intent was to again draw on randomization 
to come to a conclusion and to introduce the concept of p-values—using informal 
approaches as an introduction to the formal procedures of significance testing. The 
final unit in the course supported students in hypothesizing a model from samples 
of data to emphasize the power of statistical inference to make claims about a popu-
lation or process based on limited (sample) data generated from it.
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8.5.3.2  Tertiary Case 2: Randomization and Bootstrapping Methods

University researchers in New Zealand have also adopted Cobb’s (2007) recom-
mendations, creating a large project to study how to introduce tertiary students to 
inferential ideas using bootstrapping and randomization methods (Budgett et  al., 
2013; Pfannkuch et al., 2015; Pfannkuch, Wild, & Regan, 2014; Wild et al., 2017). 
As part of this work, they developed the Visual Inference Tools software (VIT, www.
stat.auckland.ac.nz/~wild/VIT), which provides dynamically linked graphs that 
track multiple runs of a simulation so that a user can see the distribution of results. 
The group considers their methods “partial informal inference,” as they use a formal 
inferential method (the randomization test), which is part of the toolkit of profes-
sional statisticians, but do not introduce students to the formal ideas of null hypoth-
esis, p-values, and significance.

Of particular interest to this research group is experiment-to-causation inference, 
since it is an often-overlooked aspect of statistical reasoning, but of the utmost 
importance in the study of statistics as they are actually used. The example illustrated 
below in Fig. 8.8 is the analysis of an experiment in which the efficacy of taking fish 
oil vs. regular oil on lowering blood pressure was tested. In the top graph of Fig. 8.8, 
the actual data distribution is shown, along with the difference of means of blood 
pressure in the two treatment groups (7.71 mmHg). The data were then randomly 
reassigned to the two groups, the difference in the resulting group means recorded 
(Fig. 8.8, middle graph), and the process repeated. The distribution resulting from 
1000 repeated random reassignments is displayed in the bottom graph of Fig. 8.8, 
which allows students to judge whether the actual difference of 7.71 mmHg would 
be considered unlikely, i.e., how often a difference of 7.71 mmHg or greater would 
occur if the treatment had no effect. In this case, a difference that large in that 
direction would occur only 8 in 1000 times, so it is relatively unlikely.

Randomization methods such as these are highly visual and generally more 
accessible to students than conventional methods involving null hypotheses and 
p-values, therefore “increasing the accessibility of data exploration and inferential 
ideas to wider audiences” (Wild et al., 2017, p. 21). However, research with these 
tools has also demonstrated the complexity of the process of untangling the multi-
ple aspects of uncertainty at the heart of making causality judgments in probabilis-
tic settings. For example, in experiment-to-causation settings, students were more 
likely to invoke unrelated causal knowledge to explain differences than they were 
in sample-to-population inference. Students also had trouble figuring out how to 
apply ideas they had learned in the context of sample-to-population inference to 
experiment-to-causation inference, including notions of sample size, tail propor-
tion, confounding variables, and generalization (Pfannkuch et al., 2015). The com-
plexities of untangling these concepts suggest that “developing students’ 
understanding of causality in a probabilistic setting will require multiple experi-
ences over several years” (p. 21).
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8.5.4  Insights into Informal Statistical Inference from the Cases

The cases above highlight two key issues in engaging students in informal statistical 
inference. First, they emphasize the potential for informal statistical inference to help 
students across a number of levels (young children through university) to work produc-
tively with powerful statistical ideas before or instead of studying formal hypothesis 
testing. Second, the cases make it clear that separating informal and formal statistical 
inference dichotomously does not capture the utility of putting informal inferential 
reasoning into practice. While we consider them all examples of “informal” inference, 
there are aspects of formalism in them, especially as the students involved get older. In 
this sense, these cases blur the boundaries between formal and informal statistical 
inference and point instead to the value of focusing on students’ inferential reasoning 
developed through visualization, simulation, and powerful problem contexts.

Fig. 8.8 Screenshot of dynamically linked plots in VIT randomization test (Pfannkuch et al., 2015)
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8.6  Summary and Future Directions

In sum, we have argued that statistical inference—formal, informal, or in-between—
is where much of the power of statistics lies. Statistical inference, similar to Dewey’s 
notions of inference, relies on evidence but goes beyond it from “what is present to 
something absent” (Dewey, 1910, p. 75). The ability to make statements or predic-
tions beyond the data at hand, with the inclusion of uncertainty, provides students with 
the potential for insights they can use to win games, catch burglars, and test drugs. We 
have seen how the structure of traditional approaches to formal statistical inference 
can frustrate novices, and how new approaches to inference, collectively called “infor-
mal statistical inference,” can provide students of all ages with more powerful statisti-
cal experiences. The four case studies included in this chapter illustrate what informal 
statistical inference might look like as students as well as teachers become more 
sophisticated in their statistical reasoning. They share a reliance on visual representa-
tions, use of technology specifically designed to illuminate statistical concepts (for 
middle school and beyond), and engaging research- based curriculum tasks.

In many ways, the study of informal statistical inference is quite young, and it is 
hard to predict where research will head next. From our perspective, however, there 
are a number of directions that we see as particularly likely to assume importance in 
the near future, either because they represent major changes in the statistical milieu 
or because they are natural outgrowths of current work. Here we briefly discuss five 
such areas of inquiry: (1) the relationship between statistical modeling and statistical 
inference, (2) data science and big data, (3) reconsiderations of probabilistic reason-
ing, (4) inference using time series and correlations, and (5) the potential of develop-
ing a statistics curriculum that develops students’ informal inferential reasoning from 
kindergarten through tertiary levels. In each of these, we propose ideas for research 
that would extend our understanding of the development of inferential reasoning.

Statistical modeling has been studied for many years, including by those work-
ing with children (e.g., English, 2012; Konold, 1994; Konold, Harradine, & Kazak, 
2007; Lehrer & Schauble, 2000, 2004). In most of these cases, statistical models are 
a means of making inferences about the contexts they are representing. There has 
been a strong resurgence in statistical modeling in the past few years, possibly as a 
result of new research in informal statistical inference and its shared goal of 
enhancing access to the power of statistical inference (see Lehrer & English, Chap. 
7). As one indication of this connection, a special collection of papers on reasoning 
about models and modeling in the context of informal statistical inference was  
published in 2017 in the Statistics Education Research Journal.

A focus on modeling also provides an opportunity for collaboration between the 
math education and statistics education communities, as mathematical models may 
act as “boundary objects” that support conversation between the communities 
without requiring a single definition of “model” (Groth, 2015). Since, in either 
mathematics or statistics, modeling is a tool that allows us to understand empirical 
situations better, there are obvious overlaps between the research concerns of math-
ematics and statistics educators with respect to modeling.
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The advent of “big data” has brought statistical reasoning into the spotlight, as 
people in a wide variety of fields seek insight from the flood of data newly available. 
Data science is touted as a driver of the economic future, and data skills have joined 
the ranks of abilities necessary for successful employment. However, much of the 
scholarship in this area is being done by computer scientists who have little knowl-
edge of the research that has been carried out by the statistics education community 
over the past several decades; building bridges between these two groups could be an 
important step for understanding what “inference” means in the context of big data. 
With very large data sets, for example, statistical significance is relatively easy to 
attain, so they must be regarded cautiously. In situations where statistical analysis is 
done on a population (e.g., census data or country-level demographic data), inference 
is often from the present to the future rather than from a sample to a population—and 
thus has much in common with considerations of modeling. The implications of 
these differences for informal statistical inference would be a fruitful topic for study.

Several of the differences among approaches to inference listed in Sect. 8.4 relate 
to how explicitly and quantitatively probability is described. The case studies in this 
chapter illustrate increasingly explicit notions of probability, from quite qualitative 
in primary school, to somewhat more quantitative in the middle/high school example 
(although not overtly tied to probabilistic theory), and to quite explicit and 
quantitative uses in the tertiary examples. Some questions around this topic that 
could profitably be addressed in research are as follows: How and when should 
probability topics be formally introduced to students? How does learning about 
probability relate to learning the concepts of informal statistical inference? How 
and when should they be merged?

Most of the research on inferential reasoning, both formal and informal, focuses 
on sample-to-population inference and group comparison: the realm of t-tests. 
There is much less work on inferences from time series (the case study included in 
this chapter is unusual) or inferences about correlations, such as might show up in a 
scatterplot. These are important directions for future work, as we need to understand 
how similar or different inferential reasoning processes are in these varied statistical 
contexts. How can students learn about inferential principles in one statistical con-
text that they can easily transfer to other statistical situations?

Informal statistical inference has appeared in curriculum documents in some 
countries explicitly in secondary school (e.g., New Zealand Ministry of Education, 
2016) or implicitly in primary school using words like “prediction” (e.g., Australian 
Curriculum and Reporting Authority, 2012). Bakker and Derry’s (2011) work 
reminds us that informal inferential reasoning has the potential to create more 
coherence in the statistics curriculum as a constant through line that becomes more 
complex as students progress. There is not yet a curriculum document that develops 
informal inferential reasoning throughout school, although the papers reviewed in 
this chapter span the years from the first year of school (kindergarten) through the 
tertiary years, so there is clearly potential for a coherent sequence. Creating such a 
trajectory around inference could be a valuable joint enterprise for the statistics 
education community (see Ben-Zvi et al., Chap. 16 and Pfannkuch, Chap. 12 for 
further ideas on developing coherence in the statistics education curriculum).
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Chapter 9
Statistics Learning Trajectories

Pip Arnold, Jere Confrey, Ryan Seth Jones, Hollylynne S. Lee, 
and Maxine Pfannkuch

Abstract Statistics curricula and pedagogy are changing rapidly in response to a 
growing body of research findings involving students’ reasoning processes, technol-
ogy capability, attention to underpinning conceptual infrastructure, and new ways 
of statistical practice. Because many of the statistical ideas being considered are 
currently not in the curriculum, many researchers in statistics education have inves-
tigated students’ reasoning processes through the use of learning trajectories in con-
junction with design-based research methods. In this chapter, we outline the 
characteristics of learning trajectories and exemplify how learning trajectories have 
been used in three case studies in statistics education. Commonalities and differ-
ences across the learning trajectories are discussed as well as recommendations for 
future research.
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9.1  Introduction

Over the last 20 years, learning trajectories (LTs) have gained prominence in statis-
tics education research. Part of the prominence may be due to a general trend toward 
a participationist research and design paradigm in education (Sfard, 2005). In this 
paradigm, there is an emphasis on understanding the teaching and learning process 
as it develops in actual classrooms with researchers positioning themselves as col-
laborating with teachers rather than studying them—“there is a remarkable blurring 
of the boundaries between communities of researchers and practitioners” (Sfard, 
2005, p. 401). The trend in education research toward studies with ecological valid-
ity and a participationist paradigm may have set the scene for statistics education 
researchers to use LTs particularly as many of them were searching for new ways to 
approach statistical learning.

Traditionally statistics has been taught as a series of techniques to handle and 
display data with little regard for students’ reasoning processes and the building up 
of conceptual infrastructure across the grade levels. With attention now focusing on 
students’ reasoning from data and on conceptual understanding of statistics, 
researchers have found that the conceptual underpinnings are not only difficult to 
grasp but also difficult to elucidate (cf. Chap. 8). Therefore, to explicate the concep-
tual foundations for and across statistical topics, it has been necessary to build new 
LTs within and across grade levels for research and teaching purposes. Furthermore, 
research in statistics education is challenging traditional curricula and pedagogy 
with respect to the content and the lack of attention to conceptual pathways and to 
research findings. This challenge is coming from researchers who are concerned 
about problems in students’ reasoning processes and the links these problems have 
with instructional processes. These researchers invented innovative LTs because 
they were attempting to scaffold new conceptual understandings in students that 
were not present in current curricula. They used LTs to explore and document stu-
dents’ thinking as they engaged with new approaches to statistics (e.g., Bakker, 
2004; Makar, Bakker, & Ben-Zvi, 2011). Hence, research and curriculum develop-
ment and task design and students’ thinking are both strongly connected within LTs 
(cf. Clements & Sarama, 2004). By following the development of students’ thinking 
as they engage in a sequence of instructional tasks, new findings and gaps in stu-
dents’ thinking can emerge, which can result in new research and curricular paths 
for learning (see Bakker & Gravemeijer, 2004).

In Sect. 9.2 we elaborate on key characteristics of LTs and then illustrate in Sect. 
9.3 the use of LTs in research with three case studies. Finally, we reflect on the case 
studies and discuss implications and recommendations for future research.

9.2  Characterizing Learning Trajectories

In recognition that LTs were being interpreted and applied in a variety of ways 
within research, Clements and Sarama (2004, p. 83) stated:
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We conceptualize learning trajectories as descriptions of children’s thinking and learning in 
a specific mathematical domain and a related, conjectured route through a set of instruc-
tional tasks designed to engender those mental processes or actions hypothesized to move 
children through a development progression of levels of thinking, created with the intent of 
supporting children’s achievement of specific goals in that domain.

A similar conceptualization of LTs is held among statistics education researchers 
for the statistical domains. However, to understand the characteristics underpinning 
LTs, we need to return to their origin.

LTs were originally conceived as hypothetical learning trajectories in the semi-
nal work of Simon (1995) who described from a constructivist perspective how 
teachers could conceptualize and enact the learning process within their classrooms. 
He perceived the LT as hypothetical because it was based on a teacher’s prediction 
of the learning process before it was implemented. During implementation the LT 
would be constantly updated in response to observations on students’ interactions 
and reasoning processes. Because the term LT is now commonly used in the litera-
ture, we use it to describe the predicted trajectories and the updated trajectories. 
Other researchers (e.g., Lehrer, Kim, Ayers, & Wilson, 2014) prefer to use the term 
learning progressions to reflect a more open process. Although we refer to research-
ers using LTs, in practice teachers and researchers often collaborate on designing 
and studying LTs, and teachers in their own classrooms also enact the LT teaching 
cycle.

The LT (see Fig.  9.1) involves defining a learning goal, considering possible 
learning activities and the types of student thinking and understanding they might 
evoke, and the hypothetical learning process (Simon, 1995). To produce a LT, a 
learning goal is initially defined, and then a hypothesis is formed about a particular 
group of students’ understanding within that topic domain (Fig. 9.1(1)). The hypothesis 
is based on information from a wide range of sources and experiences, for example, 
current students’ experiences in a related area, the experiences of a similar group of 

Fig. 9.1 The learning trajectory and sources drawn upon (based on Simon, 1995, p. 137)
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students, information about prior knowledge that has come to light from pretesting, 
and data and information from the research literature (Fig. 9.1(3 and 4)). Another 
dimension in the creation of LTs is the undertaking of an analysis of the web of 
concepts including the big ideas (Ben-Zvi & Garfield, 2004) that may need to be 
addressed in reaching the learning goal (Fig. 9.1(2a)). For example, if the learning 
goal is for students to learn how to reason from distributions, then an analysis of the 
concepts and big ideas underpinning distributions (e.g., data, center, variability) 
needs to be undertaken in cognizance of future LTs that may address concepts and 
ideas that cannot be incorporated into the current trajectory (e.g., inference).

Based on the researchers’ hypothesis of students’ knowledge, skills, and possible 
thought processes and an analysis of the concepts and big ideas underpinning the 
main goal, potential learning activities and the types of thinking and learning these 
activities might provoke are considered. Researchers’ theories about statistics teach-
ing and learning (Fig. 9.1(3b)), their knowledge of learning in the statistics context, 
and their knowledge of statistics activities and representations (Fig. 9.1(2)) all inter-
sect and come into play when considering possible learning activities (Simon, 
1995). Statistical tools as mediators in the learning process need to be evaluated for 
inclusion in learning activities, while attention to classroom discourse and how it 
could be used to elicit and scaffold students’ understanding is another important 
consideration. Other influences also impinge researchers’ plans for learning activi-
ties, besides age-related development issues, such as cultural factors (Clements & 
Sarama, 2004), and researchers’ beliefs and interests including those of the teachers 
that they may be collaborating with (see Chap. 10).

The learning activities can also draw on research about task design, an area of 
research that has only recently come to the forefront (see Watson & Ohtani, 2015). 
Task design is considered important because the content of the tasks affects stu-
dents’ learning and the nature of the learning (see Chap. 16). For research about 
learning, the tasks given to students have a major influence on the resultant findings 
about their conceptions and capabilities. Principles for designing tasks have been 
elucidated by Lesh and Doerr (2003) for model-eliciting activities such as personal 
meaningfulness to the student and the ability to generalize from the model con-
structed. Ainley, Pratt, and Hansen (2006) also emphasize the importance of attend-
ing to purpose and utility when designing tasks. LTs often incorporate implicit task 
design principles into the learning activities that are developed, suggesting more 
consideration is needed in this area (Fig. 9.1(2b)).

The hypothesized learning process is “a prediction of how students’ thinking and 
understanding will evolve in the context of the learning activities” (Simon, 1995, 
p. 136). This is a best guess at what will happen. There is no suggestion that the 
instruction sequence is the only or best path for teaching and learning, only that it is 
one possible route (Clements & Sarama, 2004). A LT can also be thought of as a 
description of the set of intermediate behaviors (including both landmarks and 
obstacles) that are likely to emerge, as students progress from naïve preconceptions 
toward more sophisticated understandings of a target concept (Confrey, 2006). The 
hypothetical learning process is continually modified. This is a result of the research-
ers developing a broader understanding of students’ conceptions in the area through 
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a process of reflection based on interactions with and observations of students. The 
researchers’ thinking is modified as they make sense of what is happening in the 
classroom. Reflection, based on assessment of students’ thinking, leads to constant 
adjustment and fine-tuning of the LT, the goal, the activities, and the hypothetical 
learning process (Simon, 1995).

The assessment of students’ thinking to inform modifications to the LT 
(Fig. 9.1(4)) can be investigated in a variety of ways such as individual written diag-
nostic tests, task-based individual or group interviews requiring thematic qualitative 
analyses, and analyses of classroom discussion and interaction. An interesting 
example of addressing the problem of how to analyze classroom interaction data is 
found in the work of Dierdorp, Bakker, Eijkelhof, and van Maanen (2011). To deter-
mine how well conjectures about students’ learning matched up with the observed 
learning, they used a data analysis matrix and a summary coding system for tran-
scripts from classroom interactions in order to gain insight into how their LT sup-
ported students’ inferential reasoning. More work is needed in this area to provide 
better evidence in research papers about how a LT supports or does not support 
students’ learning with respect to the learning goal.

The LT systemizes and extends what good teachers do, with the difference being 
that within a research context, it is a deliberate act: the researchers are actively and 
consciously planning, reflecting, and recording actions and thoughts. As a LT is 
being trialed through several iterations on groups of students, the goal of the 
researchers is to deliberate on the observed student development together with the 
instructional sequence and form a localized theory of instruction (Gravemeijer, 
2004). It is localized because the theory may only pertain to the group of students 
on which the instructional tasks were implemented, but other researchers may be 
able to take the theory as a framework for developing LTs for their particular group 
of students. Bakker and van Eerde (2015) explain that similar patterns of students’ 
thinking can emerge across different classrooms and teaching experiments resulting 
in a more general theory of instruction of how a topic can be taught.

In education research, the use of LTs as a research instrument is often associated 
with design-based research (DBR) methodology (Cobb, Confrey, diSessa, Lehrer, 
& Schauble, 2003; Confrey & Lachance, 2000; Gravemeijer & Cobb, 2006; 
Prediger, Gravemeijer, & Confrey, 2015). DBR is characterized as research where 
students’ development and progression are analyzed using deliberately designed 
learning activities with the aim of testing or developing theory (Bakker & van Eerde, 
2015). The aims of DBR in which a new type of learning is engineered can be mani-
fold: explanatory and advisory “to give theoretical insights into how particular ways 
of teaching and learning can be promoted” or predictive to state that “under condi-
tion X using educational approach Y, students are likely to learn Z” (Bakker & van 
Eerde, 2015, p. 431). Another characteristic of DBR is its iterative nature where 
cycles of preparation and design, teaching experiment, and retrospective analysis 
are conducted. During the teaching sequence, researchers can ascertain how the 
learning occurs in actual practice and through reflecting critically can then adjust or 
modify the plan for the next lesson. Typically these are small changes from lesson 
to lesson. After the teaching sequence is implemented, larger-scale modifications 
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can be made to the LT.  DBR has recently undergone further development (see 
Design-Based Implementation Research, 2016). Hence, DBR methodology forms a 
natural partnership with LT research. Mixed methods research methodology can 
also be used in conjunction with LTs.

9.3  Three Case Studies of Learning Trajectories

The statistics education community has produced a number of studies that contrib-
ute to the knowledge base on LTs (Franklin et al., 2007; Lehrer et al., 2014; Rubin, 
Bruce, & Tenney, 1990). Research suggests that statistical concepts should be inte-
grated into inquiry activities and that how students think about statistical concepts 
evolves as students grow in encountering accessible forms of variability (Garfield & 
Ben-Zvi, 2007; Konold & Pollatsek, 2002; Pfannkuch & Wild, 2004) that create a 
need for the concepts (Confrey, 1991).

In this section, with references to Fig. 9.1, we illustrate how LTs can be used in 
statistics education research. In the first case study, Jere Confrey and Ryan Seth 
Jones illustrate strategies to represent hypothesized construct maps to help teachers 
and students trace the growth of students’ thinking about variability. Pip Arnold, in 
the second study, has the learning goal of making a judgment or an inference when 
comparing two box plots, and she exemplifies how students were scaffolded, using 
a hypothetical learning process, toward that goal. In the third study, Hollylynne Lee, 
in collaboration with Helen Doerr, designed a LT to advance teachers toward an 
understanding of repeated sampling for inference. All these studies used DBR. At 
the heart of these case studies is the big idea of variation, from the need to invent a 
statistic to describe the variation observed to the need to take variation into account 
when making an inference.

9.3.1  Case Study 1: Two Preparatory Learning Trajectories 
for Sixth-Grade Students toward Inventing a Statistic 
for Variability

9.3.1.1  Introduction

The first case study addresses students’ introduction to the concept of variability, a 
topic studied by numerous scholars (e.g., Ben-Zvi, 2004; Garfield & Ben-Zvi, 2005; 
Konold & Pollatsek, 2002; Lehrer et al., 2014; Makar & Confrey, 2005; Wild & 
Pfannkuch, 1999). Confrey and Jones chose to approach the topic using a learning 
map organized around big ideas, which were broken down further into constructs 
with underlying LTs (Confrey, 2015). These LTs accurately characterize typical 
responses from students in increasing levels of sophistication. The map is used for 
two primary purposes: to provide professional development opportunities for teach-
ers and to develop diagnostic assessments to gauge student progress.
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9.3.1.2  The Learning Goals and the Designed Learning Process

Confrey and Jones started with the learning goals from the Common Core State 
Standards for Mathematics (Common Core State Standards Initiative, 2010) in the 
United States for sixth-grade (age 11) statistics. Through analyzing the web of con-
cepts and big ideas underpinning the learning goals (cf. Fig. 9.1(2a)), they designed 
a learning map that was hierarchically organized around nine big ideas identified by 
Confrey. The big ideas were subdivided into one to five relational learning clusters, 
which were made of sets of mutually supporting constructs. Each construct was 
described with a corresponding learning trajectory consisting of an ordered set of 
indicators of increasing sophistication. These reflect the likely student behaviors 
and thinking that would emerge as they progressed through instruction (see Table 9.1 
for the first two constructs). In statistics one big idea was “display data and use 
statistics to measure center and variations in distributions.” This big idea was 
divided into three relational learning clusters: (1) displaying univariate data, (2) 
measuring data with statistics, and (3) displaying bivariate data. Each learning clus-
ter was divided further into a set of connected constructs. The constructs for dis-
playing univariate data were (1) gathering data and describing variability, (2) 
displaying data in novel and traditional ways, (3) comparing different displays of 
the same data, and (4) shape of univariate data.

The LTs were based on a synthesis of literature from statistics education research 
and previous iterations of the learning trajectory. For example, prior to this study, 
many of the behaviors and thinking about variability were articulated in the related 
learning cluster on modeling. However, after the foundational role of this thinking 
was observed in their studies for making sense of data displays and statistics, they 
restructured the map to include these ideas in the data display cluster. In each itera-
tion of the LT, patterns in student thinking are reinforced, but nuanced variations or 
even new ways of thinking emerge and are added into the LTs.

The overarching learning goal of the trajectory for displaying univariate data was 
to support students to develop a conception of variability that was represented in vari-
ous data shapes created by displaying data and to lay the groundwork for needing a 
measure of variability in later trajectories (Konold & Pollatsek, 2002; Lehrer & Kim, 
2009; Petrosino, Lehrer, & Schauble, 2003). The goal was influenced by Confrey and 
Jones’ theories about learning (cf. Fig. 9.1(3b)) the key elements of which include the 
role of invention and of transformation (accommodation in Piagetian terms). Another 
key element of their approach was to foster discourse among the students, so they 
could learn from each other’s ideas and contributions. Teachers play a central role in 
bringing forth this thinking and building classroom norms valuing articulation and 
sharing of ideas. Their belief is that the LTs should also communicate the kinds of 
student statistical thinking teachers should attend to and how they fit together into 
trajectories of increasingly sophisticated thinking. Thinking about variability, dis-
playing one’s data, and comparing those displays prepare the ground for a discussion 
of data shape and statistics (Lehrer, Kim, & Jones, 2011; Petrosino et  al., 2003; 
Schwartz & Martin, 2004). Only after students have productively struggled with 
these ideas are they ready to invent statistics and learn conventional definitions.
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9.3.1.3  The Learning Activities and the Observed Learning Process

Confrey and Jones developed instructional materials by drawing on prior work by 
Lehrer (2016) and Confrey (2002), and they made use of TinkerPlots (Konold & 
Miller, 2005) and Data Games (Finzer, Konold, & Erickson, 2012) for data explora-
tion and display. Hence, the learning activities were based on their knowledge of 
teaching strategies and resources for statistics, their knowledge of how students might 
learn about univariate data displays, and their understanding of the current knowledge 
of the students who would be in their study (cf. Fig. 9.1(2 and 3)). Diagnostic assess-
ment to gauge student learning was also coordinated with the LTs (cf. Fig. 9.1(4)).

The following case involved 15 sixth graders (age 11) who met for 3 hours per 
day in a classroom on their research site for 1 week. The purpose of the study was 
twofold: (1) to confirm or modify the LT and (2) to collect samples of student work 
for professional development purposes. Thus, the research question under investiga-
tion was: What patterns of behavior, forms of representation, and ways of talking 
are in evidence among students when introduced to the ideas of multiple sources of 
variability and displaying univariate data, and how might these patterns be repre-
sented so that they are intelligible and useful to teachers?

The case study provides an image of student learning and how this learning is 
represented in the two constructs in Table 9.1. Throughout the description of student 
activity, the relevant levels are referenced within that construct. Note that in this 
description, Confrey and Jones are assessing students’ knowledge and thinking (cf. 
Fig. 9.1(4)) in order to inform them whether the observed patterns of behavior are 
consistent with the indicators listed in Table 9.1.

Gathering Data and Describing Variability

To engage students with the problem of creating variable data (the first two levels of 
this construct), they asked students to consider three different questions: What is the 
circumference of the fountain in our courtyard?, How many M&Ms. are in one indi-
vidually wrapped package?, and What is the circumference of a middle schooler’s 
head? To highlight the challenge of variability, they left the data collection strategies 
open-ended and provided crude measurement tools, such as string and rulers. Under 
these circumstances, students produced significant measurement error.

Student measurement mistakes, though, were a resource for them to make sense of 
the various sources of variability in the data. To elicit a conversation about sources of 
variability in the data (level 4 in Construct 1, Table 9.1), the teacher posted unordered 
lists of the students’ data and asked them in a whole class conversation “what do you 
notice when you look at all this variability?” They also discussed relative magnitude 
of the different sources they identified (level 5) by asking questions such as “what 
caused the variability in the different types of data?” Table 9.2 provides short exam-
ples of the kinds of student comments that are common to this discussion.
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Table 9.1 LT indicators for two constructs

Constructs

Construct 1: Gathering data and describing variability

  1. Recognizes target phenomenon and asks questions about it
  2. Creates and uses data as information to answer a question
  3. Describes that some questions have uncertain answers because of variability in the data
  4. Identifies sources of variability in data
  5. Estimates magnitude of different sources of variability
  6.  Categorizes sources of variability (measurement error, natural variability, production 

error)
  7. Anticipates variability in data across different samples
  8. Describes or predicts how a change in process affects variability
Construct 2: Displaying data in novel and traditional ways

  1. Displays data without reference to investigation
  2. Shows basic familiarity with bar graphs, pie charts, and dot plots
  3. Identifies or creates titles, labels, or keys
  4. Orders data from least to greatest without distinguishing scale from data
  5. Stacks individual values or within groups, intervals, or bins
  6. Scales using equal intervals
  7.  Creates dot plots and bar graphs, knows the distinction between categorical and 

continuous data, and explains choices about scale, order, and grouping
  8.  Creates histogram and circle graph, explains choices about intervals, and provides either 

count or percent within each interval
  9. Makes and justifies choices about displaying data in traditional and novel ways

Table 9.2 Key concepts and student comments about variability

Data context Student comments

Individual measurements of the same 
object (in our case, the fountain in the 
courtyard)

“…with the fountain it’s like whoa! What happened 
here? I see 461 and I see like 2010!”
“people could have made mistakes when they 
measured”
“people might leave a gap when they flip over the 
ruler”

Number of M&Ms. in different bags “the factory probably didn’t measure out the exact 
amount of M&Ms”
“we also could have counted wrong”
“It’s possible to miscount 10, but it’s not extremely 
likely”

Individual head circumferences “…it’s kind of common that everyone got different 
head circumferences, because not everyone’s head is 
the same size”
“the variation might be the result of different sized 
heads, but they also might be the result of mistakes 
people made”
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Students observed that the variability in the fountain data was a fundamentally 
different kind of variability than the other two types, and they drew on their data 
creation experiences to generate theories about the kinds of errors that likely pro-
duced the variability. Students then shifted from describing data as measurements to 
calling it “opinions,” indicating their feeling that there was so much variability in it 
that it was not “scientific” enough to be called data. This conversation ended with 
the teacher asking, “What would the data look like if a class of students similar to 
us measured the same fountain?” This question was asked to evoke early ideas about 
sample-to-sample variability (level 7). Students quickly responded that the data 
would look “similar to ours”, that their data would have “the same kinds of chaos as 
our data,” and that it would “have a similar median and mean, but the numbers will 
be different.”

These themes ran throughout the rest of the activities. For example, they were the 
driving motivation for remeasuring the fountain more precisely to see how a change 
in process affects variability (level 8) and creating paper hats using their measure-
ments to estimate the extent to which measurement error contributed to the vari-
ability in the head circumference data (level 5).

Displaying Data in Novel and Traditional Ways

Confrey and Jones provided opportunities for students to invent strategies for dis-
playing their fountain data in a way that helped them think about the true length and 
the variability in the measurements. Students revealed a variety of strategies for 
displaying their data, many of which had been documented by other researchers 
(e.g., Lehrer & Schauble, 2002). Here two of the four displays that students invented 
are presented to illustrate the ways student thinking corresponds to the learning map 
and to show how student thinking developed as they invented and revised their 
displays.

Group 1 produced a dot plot without distinguishing between the data and the 
scale (Fig. 9.2). They explained that they wanted a display that clearly displayed 
every measurement observed and how often each measurement was observed. They 
made the decision to order the data from least to greatest (level 4), without repre-
senting gaps, but with stacking of identical values (level 5).

Group 2 created a histogram (that they referred to as a box plot) with 100 cm 
intervals (Fig. 9.3). Similar to group 1, they ordered the data from least to greatest 
(level 4), but, in contrast, they grouped and stacked all values within a 100 cm inter-
val (level 5) and created an interval scale (level 6). These choices created a very 
different representation of the data, which provided a context to discuss the trade- 
offs between the two.

As they created these invented displays, the students sometimes showed evi-
dence of thinking at the lower three levels of the construct as they sometimes con-
sidered decisions without referencing the question about the fountain circumference, 
referred to approximate notions of conventional displays, and created titles and 
labels. However, the most significant intellectual work for students came when they 
had to consider decisions about order, grouping, and scale (levels 4–6). For exam-
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ple, the students had to decide if the display scale needed to include values that were 
not observed. Their early decisions about data displays were not driven strictly by 
convention, but more by their desire to make sense of variability and communicate 
meaning to their peers. Only after wrestling with these issues were data display 
conventions (levels 7 and 8) introduced, so the conventions could be rooted in stu-

Fig. 9.2 Group 1 data display

Fig. 9.3 Group 2 data display
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dent ideas and displays. When given the opportunities to build their ideas about 
statistical thinking from accessible forms of variability, students often demonstrate 
the behaviors, strategies, and thinking described in these LTs.

9.3.1.4  Discussion and Future Recommendations

This case illustrates the potential value of designing a learning map based on an 
analysis of the big ideas and the web of concepts that need to be included in the 
LT for supporting teachers to understand student thinking. It also illustrates the 
need for several iterations of LTs and reflection and analysis on students’ responses 
in the development of that map. By explicating in detail indicators of likely stu-
dent thinking as they progress through the LTs, this research across multiple set-
tings is at the stage of developing a dynamic representation of student thinking 
that can serve as an orienting framework for curriculum and assessment design. A 
product of the research for teaching is the learning map and its LTs including 
resource material for teaching and student work for teacher professional develop-
ment which can make patterns of student thinking intelligible to teachers.

The advantage of the approach outlined in this case is that the LTs for data, vari-
ability, and statistics are related to LTs that Confrey and her team have developed 
and refined across all big ideas for middle grade mathematics. This provides teach-
ers a comprehensive resource to have access to syntheses of learning trajectories. In 
addition, the map makes it possible to study what the effects of an overall approach 
informed by LTs would be as students accumulate experience with the map. Too 
often LT studies are difficult to continue across grades as students switch teachers 
and classes. In this way, research can contribute to the building up of infrastructure 
for supporting the long-term development of statistical concepts, a facet that is lack-
ing in current curricula.

9.3.2  Case Study 2: Preparing Ninth-Grade Students to Make 
the Call—Learning How to Make a Judgment When 
Comparing Two Box Plots

9.3.2.1  Introduction

The second case study illustrates a LT which started with a well-defined learning 
goal but required thought about the underpinning concepts that students needed to 
experience. Because the learning goal was new to the curriculum and resources did 
not exist, Arnold and a research team of two statisticians and nine teachers collab-
oratively worked on inventing language to describe the statistical ideas and design-
ing learning strategies and resources. The challenge in this case study was to develop 
a set of structured learning experiences that would enable grade 9 (age 14) students 
to “discover” collectively the criteria for “making the call”—making a judgment 
when comparing two box plots.
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9.3.2.2  The Learning Goals and the Designed Learning Process

The learning goal arose from a study on the reasoning processes of students in a 
grade-9 class. The students were learning how to make an inference when compar-
ing two box plots and were making the call based on a variety of criteria (Pfannkuch, 
2007). From the student responses, it was clear there was no agreed understanding 
between the teacher and her students as to what constituted support for an inference. 
Furthermore, the investigative question that the students were exploring was about 
the populations, but the students’ reasoning was based on describing the sample 
statistics. In New Zealand, the curriculum (Ministry of Education, 2007) and subse-
quent national assessment required students to make informal inferences (see Chap. 
8) about populations from samples for comparative situations. This created the 
problematic situation. Hence, a developmental pathway was proposed for compara-
tive situations from grade 9 to grade 12 for justifying how to make a call or make a 
decision about whether condition A tends to have bigger values than condition B 
back in the populations (Wild, Pfannkuch, Regan, & Horton, 2011). The problem 
for this study was how to create a LT to enable students to understand the rationale 
and concepts underpinning making the call using the rule as outlined in Fig. 9.4.

In cognizance of the research literature and an analysis of the web of concepts 
(cf. Fig.  9.1(2a)) needed for making the call, the research team determined that 
enabling students to make the call depended on building their understanding of a 
network of underlying interrelated concepts, the key concepts identified being sam-
ple, population, and sampling variability. They considered sampling variability rea-
soning to be at the core of statistical practice but noted it had only recently received 
attention in school curricula and instruction. Typically, students reach the final years 
of high school, where they are explicitly introduced to notions such as basic statisti-
cal inference from confidence intervals, without fundamental knowledge or 
 experiences of sampling behavior. Despite the importance of considering variation 
in statistics, researchers have only in the last two decades begun to document stu-

“How to make the call” by Age Level

At all Ages: A
B

If there is no overlap of the boxes, or only a very small overlap
make the call immediately that B tends to be bigger than A back in the populations

Age-14: the 3/4-1/2 rule
A
B

If the median for one of the samples lies outside the box for the other sample
(e.g. “more than half of the B group are above three quarters of the A group”)

make the call that B tends to be bigger than A back in the populations
[Restrict to samples sizes of between 20 and 40 in each group]

Apply the following when the boxes do overlap ...

Fig. 9.4 How to make the call at ninth grade (age 14) (cf. Wild et al., 2011, p. 260)
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dents’ conceptions of variability. Therefore, a carefully structured set of learning 
experiences to support the LT was required if students were to understand and 
appropriate the sampling variability reasoning underpinning statistical inference. As 
Garfield and Ben-Zvi (2007) stated in relation to distribution, center, and variability, 
students “need help in developing an understanding of what these concepts actually 
mean and how to reason about them in an integrated way” (p. 386).

9.3.2.3  The Learning Activities and the Observed Learning Process

This case study reports on one class, although the research was undertaken with a 
number of classes (see Arnold, Pfannkuch, Wild, Regan, & Budgett, 2011). The 
planning and preparation phase involved trialing potential learning activities with 
the research team and making continuous changes to how the development of the 
three key concepts could be approached. Changes to the LT were also made when 
implemented in the classroom. The research question was: How can grade 9 stu-
dents be facilitated to consistently and coherently make a statistical inference?

As already signaled, the three key concepts of population, sample, and sampling 
variability were important to support the LT for making the call. Specific learning 
materials and activities were created to support the development of these concepts 
and to support the LT (Table  9.3), which comprised 15 lessons. Some activities 
were deliberately planned and developed from the outset with the LT in mind, and 
some activities were developed as part of the ongoing reflection on the LT through-
out the implementation in this class. In the description that follows are some 
vignettes of the learning experiences including examples of how and why the LT 

Table 9.3 LT for the development of key concepts when comparing two box plots

LT for learning how to make a judgment when comparing two box plots (n ≈ 30)

1: Sampling data from a population

  • Identify population
  • Pose and critique investigative questions about the population
  • Recognize the need to use a sample to answer a question about the population
  •  Acknowledge that samples from the same population for the same variable provide similar 

information
  • Appreciate that inferences about a population can be made from a sample
2: Sampling variability

  •  Recognize sampling variability in the center across multiple samples of the same size from 
the same population

  •  Appreciate sampling variability in the center and the extent of the overlap when comparing 
two box plots across multiple samples of the same size from two different populations

3: Developing criteria for making the call

  •  Recognize the salient features to focus on when comparing two groups (e.g., center, 
shift, overlap)

  •  Acknowledge that there are two situations for making the call when comparing two 
groups
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was modified in response to the research team’s observations during the preparation 
stage and the collaboration of Arnold and the teacher in the classroom during the 
implementation stage.

Population and the “Population” Bags

As the “population” of Karekare College students (a fictitious college) was going to 
be used extensively throughout the teaching implementation, it was important that 
students in the class became familiar with the data that was available. The popula-
tion of Karekare College students was represented using a plastic bag filled with 
data cards (see Fig. 9.5). Each data card represented 1 student and contained 13 
different variables relating to the student. To develop familiarity with the data, stu-
dents had to work out what the different variables were on the data cards.

During subsequent lessons, whenever the teacher referred to Karekare College, 
she nearly always showed the population bag (see Fig. 9.5), indicating that she was 
referring to the whole population, not just the data cards that the students had 
selected. The ability to keep reminding students that they were making an inference 
about the population by holding up the bag was an addition to the LT by the teacher, 
which was regarded by her and other teachers as an important facet in aiding stu-
dents’ statistical reasoning processes. Giving students an image of the population 
was an issue that was extensively debated by the research team, because the 
Karekare College data had been randomly selected from a large CensusAtSchool 
New Zealand (2003) database and hence could be considered a sample, but then the 
database was also a sample itself. By considering students’ understanding of these 

Fig. 9.5 Karekare College data cards and the population bag
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issues and the fact that they were novices (cf. Fig. 9.1(3)), the research team decided 
to view the Karekare College students as the population. Although the population 
bag provided a good visualization of the population, it was insufficient, as a posttest 
revealed students did not have images for or contextual knowledge about popula-
tion distributions. Hence, the assessment (cf. Fig. 9.1(4)) led to the creation of an 
additional LT.

Developing the Idea of Using a Sample

Having established the population and the variables for which data were available, 
the students posed a variety of investigative questions. The teacher and Arnold 
together identified which of the variables would be used for the activity where the 
concept of sample was first addressed. From the different investigative questions 
that the students posed, one was selected to be explored further. The students were 
to answer the question: “What are typical popliteal1 lengths of students at Karekare 
College?” The teacher, as part of the planned LT, asked them how they might go 
about answering this question, to which they ultimately replied that they would be 
“putting [the data] in a graph.” There was then some discussion and the students, 
working in small groups each with their own population bag, started to graph all 
(616 students) of the student data, using the data cards and a pre-prepared grid. 
After about 10 minutes, some general discussion started about “students” not all 
fitting onto the grid. A student said, “I’m not going to organize the whole college 
into this,” at which point the teacher asked, “Is there a better way than looking at the 
whole lot?” The ensuing discussion and action resulted in students continuing until 
they had filled up their group’s grid or felt that the shape of the graph was not chang-
ing despite adding more data cards, i.e., they did not use the whole population, just 
part of it. The teacher allowed the idea of using a sample, rather than the whole 
population to answer the question, to come from the students—she did not say to 
her class at the start, “Take a sample and use this to answer the investigative ques-
tion.” From the observed responses of the students, it was felt that the students were 
developing the idea that a sample could tell them something about the population. 
This observation was reinforced when comparing pre- and posttest student assess-
ment responses as in the posttest students specifically referred to the population of 
interest in their investigative questions and in their conclusions.

Sampling Variability

Sampling variability was explored in a number of ways. In the lesson described 
previously where sampling was first introduced, the students had created their 
graphs using the actual data cards, which provided a strong visual display. The 

1 The popliteal length is a measurement taken on the back of the leg from behind the knee to the 
floor when a student is seated.
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teacher gave students time to walk around the class and see how their graph com-
pared with other graphs in the class. The students looked at features that were simi-
lar and features that were different. All groups gave an indication of where they felt 
the middle of their popliteal length data was, and across the class the set of middle 
popliteal-lengths for the different groups lay within a 3–4 cm band. The students 
were able to see that the middle popliteal length was similar even though the sam-
ples were different.

Sampling variability was a focus again in a later lesson about making the call 
when students were looking at the patterns across different samples with respect to 
two variables: student heights disaggregated by gender and time taken to get to 
school disaggregated by mode of transportation. These two examples were deliber-
ately chosen for the LT as they captured very clearly the two situations described in 
Fig. 9.4. Note that students were observing box plots, with only the box part drawn, 
a modification made to the LT when trialed with the research team in order to focus 
student attention on the salient features for making the call (see Fig. 9.6 and Arnold 
et al., 2011).

Making the Call

When students were looking for patterns across the sets of graphs, Arnold and the 
teacher realized that additional prompts were required because information about 
the shift and the position of medians was not forthcoming. According to Bodemer, 
Ploetzner, Feuerlein, and Spada (2004), leaving students to generate hypotheses 
about relationships on their own is very hard, and they may not pay attention to 
salient features. Bodemer et al. (2004) suggest that learners’ interactions with learn-
ing materials should be structured so that hypotheses are formulated only on one 
relevant aspect of the visualization at a time, and therefore in a modification to the 
LT, the students were guided to first focus on the distributional shift and then on 
which median was bigger.

After students had sorted their samples for each question, the teacher and class 
reflected on the process. They described and abstracted the patterns and criteria for 
making a call about what was happening back in the two populations. This allowed 
students an opportunity to extract relevant principles (Bakker & Gravemeijer, 2004). 
The students noticed that in the samples for heights, the boxes were close together, 
whereas in the samples for time taken to get to school, the boxes were apart 
(Fig. 9.6). They named these two situations about the relative location of the boxes 
Situation 1 and Situation 2, respectively.

In the following excerpt, they explore the differences between the two situations 
(see Fig. 9.6):

Teacher: So in our first situation we’ve got the boxes. They’re all overlapping; some 
of them are going this way and some of them are going the other way. The medi-
ans are very close together, and the medians are also within the overlap of the 
boxes. In the second situation, how is it different? What’s different about the 
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overlap here? Is there no difference between the overlap on these boxes and these 
boxes?

Student: They’re not overlapped so much.
Teacher: They’re not overlapped so much. No, they’re not. Okay, do they all 

overlap?
Student: No.
Teacher: No, so when they do have an overlap, they don’t overlap much and other-

wise they don’t overlap at all. What can you tell us about the medians in this one?

Fig. 9.6 Box plots of two situations: (a) samples comparing heights of girls and boys (on the left) 
and (b) samples comparing time taken to get to school by bus and walking (on the right)
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Student: They’re not overlapped.
Teacher: They’re not in the overlap.

Visually and verbally, the students and teacher described differences in the two 
situations in terms of shift, overlap, and location of the medians. The students and 
teacher started to develop the criteria and language for making or not making a call. 
Collectively they spontaneously used hand gestures to describe the two situations, 
close (Figs. 9.6a and 9.7a) and apart (Figs. 9.6b and 9.7b), with vibrations to show 
the effect of sampling variability. Gestures according to Radford (2009) are a pre-
cursor to verbal conceptualization. The use of these gestures and the naming of the 
two situations, as Situations 1 and 2, by the teacher and students were built into the 
LT in subsequent classroom implementations.

The students also noticed that in Situation 2, there were consistent messages 
from the samples about the relative location of the two medians to one another back 
in the populations, allowing them to determine the larger of the two population 
medians, i.e., the median time to school by bus was always longer than the median 
time to school by walking. This was not the case in Situation 1. The students noted 
that sometimes the boys’ median height was higher than the girls’ median height 
and sometimes it was the other way around. Through recognizing and reasoning 
from the patterns in the two situations, they “discovered” collectively the criteria for 
making a call when two box plots are compared and the boxes overlap (age 14, 
Fig. 9.4) and do not overlap (at all ages, Fig. 9.4).

After further reinforcement of how to make the call for comparative situations, 
the students were given some practice material. The practice material given to the 
students had each student use a different sample from the same population as they 
worked on the same investigative question. However, this had the effect of rein-
forcing the idea that they could use multiple samples to make the call—an unfor-
tunate side effect that had not been anticipated. Therefore, in a modification to the 
LT, all the practice material involved the same single sample for all students in the 
class, reflecting what happens in reality, for each investigative question. The use 
of multiple samples from the same population was appropriate for developing the 
 understanding of making the call and sampling variability; however, it was not 
appropriate for subsequent practice as it created an unintended confusion for 
students.

Fig. 9.7 (a) Hands close together mimicking two box plots overlapped (on the left) and (b) hands 
apart mimicking two box plots with little overlap (on the right)
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By the end of the LT, based on an analysis of posttest data and individual student 
interviews, these students were beginning to understand how to make a statistical 
inference. They were (1) articulating the uncertainty embedded in an inference by 
drawing upon ideas about sampling variability, (2) making a claim about the popu-
lation from the sample, and (3) explicitly providing the evidence they used from the 
data such as distributional shift, overlap, position of the medians, and the decision 
guide that enabled them to make or not make a call (cf. framework of Makar & 
Rubin, 2009; Chap. 8). They also seemed to understand how and why the use of the 
overlap and position of the medians relative to the overlap informed their use of the 
rule to consistently and coherently make an inference (see Arnold, 2013; Arnold 
et al., 2011).

9.3.2.4  Discussion and Future Recommendations

Working together to plan the LT and the carefully structured set of learning experi-
ences to support the LT allowed the teacher, Arnold, and wider research team to get 
a better sense of the possible responses and outcomes for students. Modifications to 
the LT occurred through extensive debate within the research team, in response to 
students’ difficulties during the lesson, from spontaneous reactions in the classroom 
to the issue under consideration, through reflection on the lesson or an in-depth 
analysis of student data after the lessons. The LT for developing the concept of mak-
ing the call with grade 9 students has been the basis for teacher professional devel-
opment and subsequent use in their classes.

Defining the learning goal and analyzing the web of concepts are essential ingre-
dients for the construction of LTs. The rich interrelated conceptual repertoire under-
pinning statistical ideas needs further research including finding ways of developing 
new conceptual understandings that are not present in current curricula. As this case 
illustrates, LTs using DBR can assist in the development of new approaches to sta-
tistics and in understanding students’ reasoning processes. Other topics in statistics 
need a similar focus to understand teaching and learning processes better, to gener-
ate local theories of instruction, and to explore and identify interesting phenomena.

9.3.3  Case Study 3: Preparing Teachers to Develop 
a Conceptualization of Repeated Sampling for Inference

9.3.3.1  Introduction

The third case presents a LT for assisting adult learners (mostly secondary and post- 
secondary mathematics and statistics teachers) in conceptualizing repeated sam-
pling approaches to statistical inference, with particular attention to the role of 
probability models in that conceptualization. The teachers had already been exposed 
to formal hypothesis techniques. The intent of this case is to illustrate how and why 
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a team of instructors working in real graduate-level classrooms with a designed LT 
added further learning experiences in response to their observations on the teachers’ 
reasoning processes.

9.3.3.2  The Learning Goals and the Designed Learning Process

The focus of the LT in this case study was to assist teachers in conceptualizing a 
repeated sampling approach to inference and to consider their learning with this 
approach. In a repeated sampling approach to inference, students and teachers 
should be conceiving of the observed outcome (from an observational study or an 
experimental design) as resulting from a process that is repeatable and that repeat-
ing the process may result in a different outcome. Thus, the question becomes: How 
unusual is what happened in the particular instance that we know about already? In 
other words, what is the likelihood of a particular outcome occurring if a process is 
repeated many times?

Lee and Doerr considered learners’ use of probability models as essential to 
conceptualizing a repeated sampling approach to inference. To produce the LT, they 
considered the research literature and curriculum development in recent years that 
had focused on understanding inference and using simulation to enact resampling 
approaches (cf. Fig. 9.1(2 and 3)). For example, Saldanha and Thompson (2002) 
reported that when students can visualize a simulation process through a three-tier 
scheme, they develop a deeper understanding of the process and logic of inference. 
This scheme is centered around “the images of repeatedly sampling from a popula-
tion, recording a statistic, and tracking the accumulation of statistics as they distrib-
ute themselves along a range of possibilities” (p. 261). Lane-Getaz (2006) offered 
the simulation process model (SPM) to describe the process of using simulation to 
develop the logic of inference starting with a question in mind, “what if,” to investi-
gate a problem including three tiers: population parameters, random samples, and 
distribution of sample statistics. In line with Lane-Getaz’s suggestion, Garfield and 
Ben-Zvi (2008) and Garfield, delMas, and Zieffler (2012) used a generalized struc-
ture to the logic of a simulation approach to inference in their curriculum materials. 
Their structure includes specifying a model, using the model to generate simulated 
data for a single trial and then multiple trials, each time collecting a statistic of 
 interest, and finally using the distribution of collected summary measures to com-
pare observed data with the behavior of the model.

Saldanha and Liu (2014) described work with learners in repeated sampling 
tasks and made the case that students should develop a stochastic conception of an 
event that “entails thinking of it as an instantiation of an underlying repeatable 
process, whereas a non-stochastic conception entails thinking of an event as unre-
peatable or never to be repeated” (p. 382). Such a stochastic conception includes 
seeing an event as an expression of some process that could be repeated under 
similar conditions that produces a collection of outcomes and “reciprocally, see-
ing a collection as having been generated by a stochastic process” (p. 382). All 
this research literature fed into the development of the LT (cf. Fig. 9.1(2)) includ-
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ing the influence of the modeling perspective of Lesh and Doerr (2003) and the 
importance of a careful model development sequence for learners. Such a model 
development sequence emphasizes how learners develop their own models of a 
context within a LT.

Lee and Doerr’s learning goal was for teachers to develop a stochastic concep-
tion of events and a generalizable model that they could use to approach inference 
situations using a repeated sampling approach and for them to be able to assist oth-
ers in using such an approach (cf. Fig. 9.1(1a)). This model includes understanding 
the relationships among the problem situation, physical enactments of sampling, 
representations of those enactments, computer representations, and the underlying 
randomization (i.e., the probability models discussed above), the distribution of the 
statistics of interest, and how to interpret and use such a distribution (a sampling 
distribution) to make a decision. In order for learners to develop that model (and the 
entailments needed for teaching that model), they hypothesized that they should be 
able to make connections to and use the underlying probability model of repeatable 
actions with unpredictable outcomes.

The initial LT of Lee and Doerr is depicted in Fig. 9.8. This represents the key 
experiences they felt would lead to a generalizable model for how to use a simula-
tion approach to inference. The key experiences in the trajectory are bolded in the 
center, while the statistical concepts that should be emphasized at each phase in the 
trajectory are noted on the right, and pedagogical considerations that could be use-
ful in participants’ own teaching practices are noted on the left. Both the statistical 
ideas that needed to come to the fore and pedagogical issues could help inform the 
development of teachers’ understandings.

Fig. 9.8 Initial planned LT for a repeated sampling approach to inference
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9.3.3.3  The Learning Activities and the Observed Learning Process

Lee and Doerr’s research goals were to (1) develop and test a sequence of tasks in a 
LT that could achieve their learning goals for a particular group of adult learners and 
(2) identify key conceptualizations that seem to afford a stronger development of a 
generalized model of repeated sampling approach to inference. The approaches 
used in DBR (Bakker & van Eerde, 2015), their understanding of the literature on 
probability models and repeated sampling approaches to inference, and the repre-
sentations and activities used by others (e.g., Lee, Angotti, & Tarr, 2010) informed 
their design of the LT (cf. Fig. 9.1(2)). The plan for the initial LT was designed dur-
ing the 4 months before the course began and then revised during the first 7 weeks 
of the course as they got to know their learners. The course was taught by 4 instruc-
tors (led by Lee and Doerr) over 15 weeks in a once-a-week 3-hour meeting format 
to 27 teacher participants across 2 institutions.

What follows is a description of the LT at the point where teachers are comparing 
two proportions, the fifth task, and the consequent adjustments made to the LT 
based on their ongoing analysis of their learners’ successes and struggles.

For the fifth task, they wanted teachers to apply their developing repeated sam-
pling model for understanding the likelihood of a single proportion to the compari-
son of two proportions from an experimental design study (see fourth and fifth 
bolded goal in the initial LT in Fig. 9.8). They modified the Dolphin Therapy task 
(Catalysts for Change, 2012) to ask teachers to create a by-hand simulation using 
index cards that would answer the question: Can swimming with dolphins be thera-
peutic for patients suffering from depression? In the experiment, in the dolphin- 
swimming group (treatment), 10/15 patients improved their depression, while 3/15 
improved in the control group. The question is whether that result indicates that 
swimming with dolphins is therapeutic for depression. The teachers were given 30 
index cards marked with results from the study (13 cards marked “YES” for those 
benefiting with swimming with dolphins, and 17 cards marked “NO”).

Lee and Doerr anticipated that how to conceive the random assignment in groups 
as a repeatable action would not be obvious, an important consideration when 
designing a LT. A variety of methods were created by teachers. After the discussion 
to draw out the importance of the assumptions of random assignment and that a 
patient’s outcome does not change regardless of group assigned, the class eventually 
agreed to shuffle the cards representing the 30 patient outcomes and deal cards into 
2 groups of 15. By repeating this action and computing the difference in proportion 
of YESs, they could examine a distribution of the difference in proportions on a 
shared class dot plot and consider how likely it is that the benefits of therapy reported 
in the original study happened by chance alone.

The Dolphin Therapy hands-on experience was followed by a sixth task that was 
another model exploration activity where the sampling distribution was explored 
again in Statkey (Lock, Lock, Morgan, Lock, & Lock, 2013) and TinkerPlots 
(Konold & Miller, 2005). Many of their teachers seemed to struggle with the multi- 
tiered process involved in doing a simulation through repeated sampling for this 
comparing proportions task. It was sometimes difficult for them to keep in mind all 
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the steps of the process that were happening in the computer. They also struggled 
with interpreting the sampling distribution in terms of how to use it to make an 
inference. The seventh task provided an opportunity for teachers to further explore 
the structure of their developing models by reading two articles (Lane-Getaz, 2006; 
Lee, Starling, & Gonzalez, 2014) in which diagrams were used to illustrate the 
simulation approach.

In the weekly team meetings, the four instructors (including Lee and Doerr) 
discussed the teachers’ struggles with the repeated sampling approaches used in the 
two simulation tasks. They were not convinced that their learners had developed a 
general model for how to use a simulation approach to inference that they could 
apply to other situations and use for teaching students to use such an approach. 
Thus, they designed a new eighth task to allow teachers an opportunity to express 
their developing conceptions of the simulation process in terms of how they would 
help students understand the process. They considered that this task was an oppor-
tunity for teachers to explore their representations of the structure of models of 
repeated sampling for drawing inferences that would serve a pedagogical purpose. 
That is, the intended audience for this representation would be the future students of 
the teachers, and this representation hence served a perceived purpose of explaining 
the structure of models of repeated sampling to other learners. Teachers worked in 
small groups to do the following:

Suppose you were going to use a repeated sampling approach with your students to help 
them use a simulation (with physical objects or computer models) to investigate if an 
observed statistic is likely or unlikely to occur. Draw a diagram you could use to help students 
understand the general process used for applying randomization techniques for solving 
these types of tasks.

Both during class and in the post-class analysis, the instructors noticed the wide 
variety of representations expressed in teachers’ diagrams. Many teachers expressed 
some aspect of the modeling process from the real-world problem (though not 
always explicit) and that a collection of statistics is used for examining likelihood; 
however, their diagrams were much less explicit about the “randomize and repeat” 
phases in a simulation approach (e.g., see sample diagrams in Fig. 9.9).

Lee and Doerr’s analysis of teachers’ diagrams and the classroom conversations 
led to the design of an additional ninth task that was structurally similar to the 
Dolphin Therapy task but required an adaptation of their previous model since it 
involved comparing means for two unequally sized groups. In addition, they delib-
erately changed the form of the manipulatives (using unmarked flat wooden craft 
sticks rather than pre-marked index cards) to further push the learners in under-
standing the role of randomization in their model of repeated sampling. The teach-
ers had varied approaches to recognizing what the repeatable action was in the 
scenario. Many used the craft sticks in some way, with slight variations from each 
other, to indicate scores and repeatedly reassigning those scores into two different 
unequal sized groups. Some teachers really struggled and did not create viable ways 
of representing the scores or reassignment to groups. Their attempts at applying their 
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Fig. 9.9 Two samples of teachers’ diagrams
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model for a repeated sampling approach to inference to create this simulation in 
such a different context really illuminated the fragility of their models and concep-
tual understanding.

9.3.3.4  Discussion and Future Recommendations

This case illustrates how an ongoing analysis and instructional experiences impact 
the development of instructional tasks hypothesized as needed to assist learners in 
further developing the intended learning goals. Retrospective analysis of learners’ 
work also can be used to modify a LT, in this case for using a simulation approach 
to inference. This analysis led to a realization that more attention needs to be given 
to the modeling process, the explicit role of probability in inference, and use of 
probability language. There is a two-part modeling process that should be made 
explicit. The first is to create a local specific model of the real-world context in sta-
tistical terms. The second is creating a simulation process that models the repeatable 
actions in the original problem and can be used to generate random samples. Most 
previous works have combined these two aspects into a single “model” or “popula-
tion” level. There seems to also be a need to be more explicit concerning building a 
distribution of sample statistics, viewing the distribution as an empirical probability 
distribution, using the distribution to reason about the observed statistic, and mak-
ing a claim about the chance of that observed statistic occurring. Lee, Doerr, Tran, 
and Lovett (2016) elaborate on these suggestions. It is important to recall that learn-
ers in this case had previous exposure and experience with learning traditional infer-
ence techniques, and some had experiences in teaching such techniques. There were 
only two who had previous experience in using a repeated sampling approach in 
their own curriculum materials with their students. Thus, the initial LT and sequence 
of tasks were designed with these learners in mind (cf. Fig. 9.1(3)). Researchers and 
teachers working with learners first engaging with inference through repeated sam-
pling will need to adapt and adjust the LT as needed.

The LT discussed in this case study demonstrates how LTs are useful for identi-
fying and exploring learners’ reasoning processes, building new conceptual 
approaches for learning statistics, contributing to the research knowledge base, and 
directing the focus of future research.

9.4  Conclusion

LTs have been critical in the development of statistics education research and in 
enhancing students’ learning in the classroom. LTs are not just a sequence of les-
sons; rather they are deliberately planned and modified based on careful analyses of 
the research literature, the web of concepts underpinning the learning goal, and the 
student responses. This chapter has focused on researchers using LTs, but we rec-
ommend that teachers, as action researchers in their own classroom, use LTs to 
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understand and improve their students’ learning. Additionally, we recommend that 
teachers co-design LTs with other teachers to reflect the intentions of their curricu-
lum and the realities of their classrooms (see Chap. 16). Co-designing LTs with 
researchers is also a possibility. We now reflect on what we can learn from the case 
studies and then propose four recommendations.

9.4.1  Reflection on the Case Studies

The LTs in the three case studies shared many commonalities. At a meta-level, all 
shared LTs that combined, in an interactive process, curriculum development and 
research and sequences of tasks and supporting students’ thinking and performance. 
Furthermore, there was collaboration with teachers in classroom settings reflecting 
a participationist research paradigm (Sfard, 2005). Differences existed depending 
on the purpose of the research, the existing research literature, and how many cycles 
of teaching experiments were implemented. All the case studies, however, reflected 
the LT iterative process outlined in Fig. 9.1 and the components necessary to inform 
its design.

All the studies started with a problem. Case Study 1 sought to model students’ 
understanding of variability over time. Case Study 2 had a defined goal of making 
the call when comparing two box plots and then ascertained the myriad of concepts 
that underpinned making a judgment under uncertainty. Case Study 3 began with 
the researchers’ knowledge of the literature on statistics, probability, and modeling 
and their belief that teachers needed to conceptualize the links among them into a 
general model. In line with the other two studies, Case Study 3 developed a hypo-
thetical learning process that aimed to scaffold teachers’ thinking toward a general 
model realization about repeated sampling for making an inference. Case Studies 1 
and 3 drew on some existing learning activities for their LTs, whereas Case Study 2 
invented its own. Whether inventing new tasks for LTs or not, all attended to delin-
eating the statistical big ideas and concepts underpinning the learning goal and 
strived to engage students in the LT’s defined abstract notions using innovative 
learning approaches. During teaching, as students engaged with the learning tasks, 
their actions, representations, and thinking were observed and analyzed. 
Consequently there was a feeding forward and back into the LTs, which were modi-
fied and altered from the planned LT. Case Study 3 illustrated the importance of a 
retrospective analysis whereby the researchers, in response to the teachers’ fragile 
understanding of models for repeated sampling in inference, proposed some new 
key conceptualizations.

Compared to research that gauges levels and types of thinking based on survey 
questions or explicating students’ thought processes when engaging with several 
tasks, research that uses LTs and DBR methodology has the potential to have more 
impact on learning in classrooms as Case Studies 1 and 2 show (see Chap. 16 also). 
While acknowledging that the findings from the former type of research are vital for 
the designing of LTs, the latter type of research is also good at identifying gaps in 

9 Statistics Learning Trajectories



322

students’ thinking and new avenues to explore (e.g., Case Study 3). A LT can be just 
one lesson or cover many lessons, but as these studies illustrated, statistical big 
ideas and concepts take time to experience and take root in students’ cognitive 
infrastructure.

In a critique of LTs used in research, Baroody, Cibulskis, Lai, and Li (2004) 
believed some of them were overly prescriptive and detailed and consequently an 
inquiry-based investigative approach was lost. They conjectured that LTs “could be 
more comprehensible and useful to practitioners if they focused on how big ideas 
evolve” (p. 253). These case studies did focus on the big ideas and how these might 
evolve at particular levels, but there is a danger that microanalyses of students’ 
thinking, while important to research, may lead to a plethora of types and levels of 
reasoning resulting in researchers and teachers using step-by-step procedures in LTs 
to achieve the learning goals. When designing LTs, an important criterion to con-
sider is the degree of openness permitted in the learning process so as not to lose the 
investigative spirit inherent in the statistical enterprise and the process of inquiry 
that is central to statistical thinking and learning (cf. Chap. 10).

The statistical inquiry investigative cycle is the centerpiece of some new curri-
cula (e.g., Ministry of Education, 2007) with students learning how to be “data 
detectives.” As part of enculturating (Garfield & Ben-Zvi, 2008) students into statis-
tical thinking and inquiry (see Chaps. 4 and 7), the development of concepts is 
essential as well as the development of coherent conceptual infrastructure across the 
curricula levels. These LTs illustrated how conceptual understanding might be built 
up in students and teachers. However, researchers may need to remind themselves 
not to lose sight of the big ideas and the inquiry-based investigative approach when 
designing LTs. That is, there is a balance between concept-focused and inquiry- 
based LTs.

9.4.2  Recommendations and Implications

We have four recommendations for future research regarding LTs:

 1. Continue exploratory research on LTs of specific topics in statistics.
 2. Scale LTs to many diverse classrooms.
 3. Build coherent conceptual pathways across curricula and grade levels.
 4. Attend to analysis of web of concepts, task design, and methods of data 

analysis.

Much of the research using LTs has been within one topic domain at one curricu-
lum level with a few groups of students. As Case Studies 2 and 3 showed, explor-
atory research with one group of students that either treads into new territory or 
investigates a concept from a new angle can provide invaluable insights into garner-
ing understanding about teaching and learning processes. These small-scale studies 
can facilitate the generation of more refined local theories about teaching and learn-
ing certain topics in statistics. Thus, our first recommendation is that researchers 
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continue using LTs in their research as they have enormous potential to explore and 
identify interesting phenomena and to develop theories about learning.

The second recommendation, which Case Study 1 attempted to address, is scal-
ability to many classrooms. The challenge for Case Study 1 was accurately captur-
ing typical responses, describing them in terms of increasing levels of sophistication, 
and communicating these ideas effectively to teachers. Another open question was 
how to make teachers aware of LT research results so that they could anticipate the 
possible student ideas and challenges, provide opportunities for ideas to emerge, 
and then use data on student learning to support continued progress in learning. 
Such challenges and questions will need to be addressed when expanding success-
ful LTs to a broad range of classrooms. When LTs are considered to have the poten-
tial to be shared, we recommend that researchers think about collaborating in new 
research projects to address how to manage implementation on a larger scale. Where 
necessary, researchers may need to alter their LTs in response to new findings as a 
result of more people such as curriculum developers, professional development 
facilitators, and teachers being involved in the implementation (e.g., Lehrer et al., 
2014).

The third recommendation is building curriculum coherence for teachers and 
students across the grade levels. What is needed is a major collaboration of research-
ers worldwide to work out the big ideas and web of concepts that have been 
researched and where more research is needed (e.g., covariation). They could then 
attempt to map across the curriculum the main conceptual pathways and identify the 
LTs that exist and may be used given the time constraints of curricula. We recom-
mend, as a start, that researchers using LTs could devise and research a pathway for 
growing students’ knowledge and thinking in one topic domain from grades 1 to 
12 in a similar vein to Case Study 1 with its learning maps, relational learning clus-
ters, and big ideas for grade 6. Perceiving across the curriculum, an evolving con-
ceptual pathway together with LTs toward a big idea could be useful for curriculum 
developers and for the research community.

In Sect. 9.2 we identified three aspects regarding the design and use of LTs that 
seemed to need more attention in research. Hence, our fourth recommendation is 
that researchers conduct more in-depth analyses of the web of concepts underpin-
ning their learning goal, carefully consider the literature on task design and the 
influence the task will have on students’ learning, and devise more transparent ways 
of analyzing data gathered and providing evidence, particularly for classroom inter-
actions. Also meta-LT research is required to study LTs as a methodological tool. 
Addressing these issues, which seem to be currently missing in statistics education 
research using LTs, would move the field forward.

In statistics education research, the use of LTs as an instrument in DBR has 
resulted in a fecund route for learning about students’ thinking and has opened up 
many new challenges and avenues for future research. As technology changes 
approaches to learning, there is now an even greater need to focus on the big ideas 
and concepts that will endure despite those changes. We believe that using LTs 
and DBR will continue to provide a fruitful and rewarding pathway for future 
researchers.

9 Statistics Learning Trajectories
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Chapter 10
Research on Statistics Teachers’ Cognitive 
and Affective Characteristics

Randall Groth and Maria Meletiou-Mavrotheris

Abstract Research about statistics teachers faces a unique challenge. It is not 
sufficient to account only for teachers’ cognition and affect in regard to the subject 
matter of statistics. We also need to understand the personal characteristics teachers 
have related to developing the statistics-related cognitive and affective traits of stu-
dents. Toward this end, researchers have supplemented studies of teachers’ subject 
matter knowledge with studies of their pedagogical content knowledge, technologi-
cal pedagogical statistical knowledge (TPSK), beliefs, and attitudes relevant to 
teaching statistics. We describe existing models and empirical research concerning 
each of these characteristics. Written assessments, interview techniques, and obser-
vation methods for assessing teachers’ development of the characteristics are 
described as well. Strengths and limitations of existing models and assessments are 
discussed. We conclude by summarizing statistics teacher education research in the 
specific areas of data, uncertainty, and statistical inference. We close with recom-
mendations about how statistics teachers’ cognitive and affective characteristics 
may be developed by learning from teaching practice, immersion in statistical con-
tent, and use of technological environments. Opportunities and directions for future 
research appear throughout the chapter. Some specific research needs include pro-
gressive development of improved models for statistics teachers’ cognition and 
affect along with robust qualitative and quantitative assessment tools.
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10.1  Introduction

The previous chapters in this handbook have dealt with the nature of statistics and 
students’ knowledge of the discipline. We now turn our attention to important medi-
ators between students and the discipline: statistics teachers (primary, secondary, 
and tertiary). Teachers can be considered the third vertex in a didactic triangle, with 
students and content as the other two vertices (Goodchild & Sriraman, 2012). The 
mediating role of the teacher has motivated researchers to study teachers’ cognitive 
and affective characteristics. Certainly, not all teacher and student interactions can 
be fully explained by these characteristics alone, since contextual constraints such 
as supervisor expectations, institutional policies, and instructional resources avail-
able are influential (Forgasz & Leder, 2008; Sullivan & Mousley, 2001). Diversity 
among students and equity concerns also come into play (Cobb, 1999). Nonetheless, 
research suggests that understanding teachers’ individual characteristics is an essen-
tial part of studying teachers’ impact on students’ learning. For example, student 
achievement in statistics has been found to be positively associated with teachers’ 
knowledge (Callingham, Carmichael, & Watson, 2016).

In this chapter, we focus specifically on research findings related to the cognitive 
and affective characteristics of statistics teachers. Precise definitions of “cognition” 
and “affect” are elusive in the literature, but we conceive of cognitive characteristics 
as being related to the knowledge and reasoning processes needed for teaching sta-
tistics and affective characteristics as being related to dispositions, emotions, atti-
tudes, and beliefs about teaching statistics (McLeod, 1992). In many cases, it is 
difficult to separate cognition from affect. Beliefs, for example, though often dis-
cussed in connection with affect, are widely acknowledged to have cognitive com-
ponents as well (Philipp, 2007). Hence, in this chapter, our primary goal is not to 
separate characteristics neatly into “cognitive” and “affective” bins, but rather to 
identify characteristics that may help shed light on the nature of teachers’ mediating 
role between students and statistics.

We begin the chapter with descriptions of salient theoretical constructs related to 
statistics teachers’ cognition (Sect. 10.2) and affect (Sect. 10.3). We then turn to 
methods for assessing attainment of these constructs (Sect. 10.4). Finally, we sum-
marize findings from research in regard to the constructs (Sect. 10.5). In doing so, 
we seek to portray the current state of the art and identify fruitful directions for 
further research (Sects. 10.6 and 10.7).

10.2  Constructs for Describing Teachers’ Cognitive 
Characteristics

Researchers employ various theoretical models to study cognition related to teach-
ing statistics. These models generally acknowledge that knowing statistics is a nec-
essary, but not sufficient, condition for teaching it. This resonates with Shulman’s 
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(1987) influential assertion that teachers need pedagogical content knowledge, 
which is a “special amalgam of content and pedagogy that is uniquely the province 
of teachers” (p.  8). Building on Shulman’s work, the Learning Mathematics for 
Teaching (LMT) Project conceptualized content knowledge for teaching as consist-
ing of both subject matter knowledge and pedagogical content knowledge (Ball, 
Thames, & Phelps, 2008; Hill, Ball, & Schilling, 2008). Several studies of statistical 
knowledge for teaching (SKT) have profitably used adaptations of the LMT model 
(e.g., Burgess, 2011; González, 2014; Groth, 2013; Leavy, 2015; Noll, 2011; 
Wassong & Biehler, 2010). Hence, we describe possible elements of subject matter 
knowledge (Sect. 10.2.1) and pedagogical content knowledge (Sect. 10.2.2) related 
to the LMT model next.

Although the LMT model appears frequently in statistics teacher education 
research, it would be inaccurate to portray it as the only model employed. We will 
also describe work that challenges the field to continue to think critically about the 
precise nature of the elements of SKT, their relationships with one another, and how 
they develop (Sect. 10.2.3). We close with a discussion of technological pedagogi-
cal content knowledge and how it relates to other research on teachers’ cognitive 
characteristics (Sect. 10.2.4).

10.2.1  Subject Matter Knowledge

Subject matter knowledge can be conceptualized as having three sub-domains: 
common content knowledge, specialized content knowledge, and horizon knowl-
edge (Ball et al., 2008; Hill et al., 2008).

Hill et al. (2008) described common content knowledge as “knowledge that is 
used in the work of teaching in ways in common with how it is used in many other 
professions or occupations that also use mathematics” (p. 377). At the university 
level, prospective teachers often study aspects of common statistical knowledge 
alongside those preparing for other professions. For example, knowing how to com-
pute and interpret descriptive statistics such as mean, median, and interquartile 
range is valuable both to teachers and to other professionals (Groth, 2007).

Specialized content knowledge can be described as “the mathematical knowl-
edge that allows teachers to engage in particular teaching tasks, including how to 
accurately represent mathematical ideas, provide mathematical explanations for 
common rules and procedures, and examine and understand unusual solution meth-
ods to problems” (Hill et  al., 2008, p.  378). Specialized knowledge of statistics 
might involve knowing how to represent the mean as a typical value, a fair share, 
and a signal amid noise (Wassong & Biehler, 2010). It might also entail the ability 
to analyze students’ statistically naïve interpretations of data (Burgess, 2011). 
Similarly, appraising novel student-invented graphical representations may be done 
by drawing upon specialized knowledge (Groth, 2013).

Ball and Bass (2009) spoke of horizon knowledge as that which allows teachers 
to see connections between content studied at a particular grade level and major 
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disciplinary structures, ideas, practices, and sensibilities. Consider the case of 
standard deviation. Seventh-grade US teachers using the Common Core State 
Standards (National Governors Association for Best Practices & Council of Chief 
State School Officers, 2010) would not teach this idea directly to their students, but 
they would be responsible for teaching the related idea of mean absolute deviation 
(MAD). Teachers might conceive of the MAD in at least two different ways: (1) as 
an algorithm for students to compute and master or (2) as a precursor for the study 
of standard deviation (Groth, 2014). Teachers holding the latter view would seem 
more likely to select tasks and ask questions that lead toward the concept of stan-
dard deviation that is on the statistical horizon. Teachers holding the former view 
may not be able to imbue their instruction with this perspective, and they may 
reduce the study of the MAD to rote learning of a procedure. Many questions about 
horizon knowledge remain for exploration by researchers, such as: (1) What specific 
aspects does horizon knowledge entail? (2) How is horizon knowledge best devel-
oped? (3) What can teachers with well-developed horizon knowledge do for stu-
dents that others cannot?

Research involving teachers frequently focuses on their subject matter knowl-
edge. Specific findings regarding the nature of different elements of teachers’ sub-
ject matter knowledge appear in Sect. 10.5.

10.2.2  Pedagogical Content Knowledge

Hill et al. (2008) hypothesized that pedagogical content knowledge has three sub- 
domains: knowledge of content and students, knowledge of content and teaching, 
and curriculum knowledge.

The first sub-domain, knowledge of content and students, pertains to teachers’ 
knowledge of students’ thinking patterns and problem-solving strategies (Hill et al., 
2008). The importance of this type of knowledge is well established in the literature. 
Teachers participating in professional development about how students think about 
content tend to be more effective in facilitating students’ learning (Franke, Kazemi, 
& Battey, 2007). Statistics education researchers have hypothesized that knowledge 
of content and students for statistics may consist of elements such as understanding 
students’ difficulty learning the mean conceptually (Wassong & Biehler, 2010), 
comprehending student difficulties sorting data (Burgess, 2011), and knowing dif-
ferences between how students tend to read dot plots and box plots (Groth, 2013). 
Comprehensively conceptualizing the nature of knowledge of content and students 
for statistics and its impact on student learning constitute important tasks for future 
research.

Knowledge of content and teaching is a combination of knowing about teaching 
and knowing about subject matter. It can help teachers with tasks such as choosing 
models and examples that bring out important aspects of content (Ball et al., 2008). 
It appears that knowledge of content and students contributes to knowledge of 
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content and teaching. Consider, for example, a teacher who knows that transitioning 
from dot plot displays to box plots and histograms is a difficult task for students. 
Such a teacher is in position to select tasks to help students gradually transition from 
one display to the next (Groth, 2013).

Ball and Bass (2009) spoke of curriculum knowledge as including knowledge of 
educational goals, standards, and grade levels where specific concepts appear. This 
type of knowledge may help teachers appropriately sequence the introduction of 
statistical ideas in a curriculum (Godino, Ortiz, Roa, & Wilhelmi, 2011). However, 
there is considerable variability in how teachers interpret curriculum materials. 
When given a curriculum, some implement it with a high amount of fidelity to the 
curriculum authors’ intentions, and others do not (Tarr et al., 2008). Sometimes this 
degrades the quality of instruction, but other times may help improve it (Brown, 
Pitvorec, Ditto, & Kelso, 2009). Hence, carefully examining statistics teachers’ cur-
riculum knowledge has the potential to help explain underlying reasons for instruc-
tional dynamics observed in the classroom.

Although pedagogical content knowledge appears as a separate category from 
content knowledge in the LMT framework, in practice, it is difficult, and often not 
advisable, to separate the two. Hence, in the summary of research appearing in Sect. 
10.5, we report findings about teachers’ pedagogical content knowledge, for the 
most part, alongside subject matter knowledge findings.

10.2.3  Continuing the Work of Precisely Defining SKT 
Elements, Their Relationships to One Another, 
and Their Development

Given the preceding description of the elements of SKT, some may gain the impres-
sion that it is a static trait rather than one that evolves and changes continuously 
within classroom contexts. LMT-based models are sometimes perceived in this 
manner (Venkat & Adler, 2014). Some theoretical work serves to cast SKT in a 
more dynamic light.

Working from the LMT framework and empirical data, Groth (2013) theorized 
about processes involved in individuals’ transformation of statistics subject matter 
knowledge into forms that are useful for teaching. Central to the analysis is the idea 
that teachers’ key developmental understandings of subject matter knowledge 
(Simon, 2006) are, alone, not sufficient for teaching. Teachers who have key devel-
opmental understandings must also learn to view subject matter knowledge from 
students’ perspectives in order to create pedagogically powerful ideas (Silverman & 
Thompson, 2008). In terms of the LMT framework, this suggests that knowledge of 
content and students is a precursor to developing knowledge of content and teach-
ing. That is, teachers should understand students’ learning needs in order to design 
and select teaching methods suitable for addressing them. The potential link between 
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knowledge of content and students and knowledge of content and teaching deserves 
more research attention, as it is difficult to conceive of a teacher with robust 
 knowledge of content and teaching but underdeveloped knowledge of content and 
students. Investigating whether one sort of knowledge is usually prerequisite to 
another could help effectively sequence learning experiences for teachers.

Studies in the traditions of design research (Bakker & van Eerde, 2015) and 
didactic engineering (Artigue, 2015) may help further reveal dynamic processes 
involved in SKT development. Such studies involve iterative cycles of research and 
development of instructional sequences in classroom settings. As the cycles occur, 
data yield contextually rich information about teachers’ knowledge and its enact-
ment in practice. Working from the perspective of teachers’ knowledge situated in 
an institutional context, Godino et al. (2011) proposed facets of professional knowl-
edge for teaching statistics that differ from those in the LMT model. One such facet 
was that teachers need knowledge of “students’ attitudes, emotions, and motivations 
regarding the content” (p. 279). This type of knowledge is similar to knowledge of 
content and students in its focus on student characteristics, but different in that it 
deals with the importance of knowing children’s affect in regard to statistics (and 
not just children’s statistical cognition). It would be profitable for researchers to 
take advantage of different conceptualizations of the nature of SKT as starting 
points for comparing and contrasting viewpoints. Done systematically, such theo-
retical comparisons could lead to the incremental development of progressively 
more sophisticated models of SKT and how it develops.

In any model of SKT that is constructed, it is important for researchers to 
acknowledge that mathematics and statistics are distinct disciplines. Mathematics 
and statistics differ in their “origins, subject matter, foundational questions, and 
standards” (Moore, 1988, p. 3). Therefore, it is reasonable to assume that the knowl-
edge needed for teaching statistics is not precisely equivalent to the knowledge 
needed for teaching mathematics (Groth, 2007). Hence, as theoretical work on the 
conceptualization of SKT continues, researchers must be careful to distinguish, as 
necessary, between professional knowledge needed for teaching mathematics and 
that needed for teaching statistics.

10.2.4  Technological Pedagogical Content Knowledge

Shulman’s (1987) notion of pedagogical content knowledge is the basis for another 
related, yet somewhat distinct, body of research on teachers’ knowledge. As digital 
technologies became more prevalent in classrooms, it was apparent that teachers 
needed technological pedagogical content knowledge (TPCK) to effectively use 
them for instruction (Koehler & Mishra, 2008). TPCK is a complex interaction 
among knowledge of content, pedagogy, and technology. Some theoretical work to 
conceptualize TPCK for statistics appears in this section, and some work to help 
develop teachers’ TPCK appears in Sect. 10.6.3.
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Lee and Hollebrands (2011) offered a framework to operationalize TPCK for 
statistics. Their framework posits statistical knowledge as the basis for technologi-
cal statistical knowledge (TSK). TSK is a blend of technology knowledge and 
 statistics knowledge. TSK includes knowledge of technologies that are both ampli-
fiers and reorganizers (Ben-Zvi, 2000; Lee & Hollebrands, 2008). Amplifiers help 
automate processes that could be done by hand, such as computing least-squares 
regression lines (Lee & Hollebrands, 2008). Reorganizers “extend what teachers 
may be able to do without technology to help students reorganize and change their 
statistical conceptions” (Lee & Hollebrands, 2008, p. 329). For instance, TinkerPlots 
(Konold & Miller, 2011) affords the opportunity to generate and link multiple 
graphical representations. Using TinkerPlots to produce suitable representations for 
data is another activity that engages TSK (Lee et al., 2014).

TSK must ultimately merge with pedagogical knowledge if teachers are to 
develop technological pedagogical statistical knowledge (TPSK). An example of a 
task requiring TPSK was discussed by Wilson, Lee, and Hollebrands (2011). 
Teachers used pedagogical, statistical, and technological knowledge in analyzing a 
video case of children working with TinkerPlots. To analyze the case, teachers 
attended to how students thought about statistical tasks, how they used TinkerPlots 
in solving them, how the technology assisted or hindered students’ learning, and the 
strengths and weaknesses of the task given to students. Statistical knowledge, or 
even TSK, would not be sufficient for analyzing these elements of the case.

At present, the literature provides a more comprehensive portrait of teachers’ 
TSK than it does TPSK, though investigation of both types of knowledge is in its 
beginning stages. Also requiring research attention are the potential links among 
statistical knowledge, TSK, and TPSK. The Lee and Hollebrands (2011) framework 
provides a starting point for such investigations, but Lee et al. (2014) acknowledge 
that empirical work remains to be done to test the conjecture that teachers’ TSK 
impacts their TPSK and teaching practices.

10.3  Constructs for Describing Teachers’ Affective 
Characteristics

In the affective domain, beliefs and attitudes of statistics teachers have received 
research attention. However, the terms “beliefs” and “attitudes” are not used uni-
formly across studies. Philipp (2007) encountered the same dilemma in writing 
about beliefs and attitudes related to mathematics. To address the problem, he 
offered general descriptions that capture much of what authors often mean when 
using the two terms:

• Attitudes: “manners of acting, feeling, or thinking that show one’s disposition or 
opinion. Attitudes change more slowly than emotions, but they change more 
quickly than beliefs” (p. 259).
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• Beliefs: “Psychologically held understandings, premises, or propositions about 
the world that are thought to be true. Beliefs are more cognitive, are felt less 
intensely, and are harder to change than attitudes” (p. 259).

These characterizations provide starting points for our discussion of statistics 
teachers’ beliefs (Sect. 10.3.1) and attitudes (Sect. 10.3.2).

10.3.1  Beliefs

Research describes several types of beliefs connected to teaching statistics. These 
include beliefs about the relationship between mathematics and statistics, goals and 
strategies for statistics instruction, and self-efficacy to teach statistics.

10.3.1.1  Beliefs About the Relationship Between Mathematics 
and Statistics

Statistics is often taught as part of a mathematics curriculum or in a mathematics 
department. This arrangement can support the belief that statistics is a branch of 
mathematics rather than a discipline in its own right (Burrill & Biehler, 2011). 
Rossman, Chance, and Medina (2006) argued that this is not a useful belief for 
teachers to hold, as it may lead to lack of instructional emphasis on the nature and 
role of context, measurement, data collection, and uncertainty in statistics. Similar 
concerns have been expressed by others (Gattuso, 2008; Scheaffer, 2006). Empirical 
data lend support to the validity of such concerns. Begg and Edwards (1999) found 
that teachers tended to acknowledge the cross-curricular nature of statistics yet still 
generally taught it as a unit of mathematics. Yang (2014) suggested that teacher 
beliefs about the differences between statistics and mathematics may be influenced 
by national curricula and assessments and that it would be worthwhile to explore the 
influence of these factors.

10.3.1.2  Beliefs About Goals and Strategies for Statistics Instruction

Eichler (2007) provided an empirically grounded framework for characterizing 
teachers’ beliefs about the goals of statistics instruction. The framework included 
four categories of beliefs: traditionalist, application preparer, everyday life preparer, 
and structuralist. Traditionalists focus on the study of probability and algorithms in 
the abstract and not on applications. Application preparers value teaching students 
the interplay between theory and applications, focusing on the use of algorithms to 
solve real-world problems. Everyday life preparers take the focus on applications a 
step further, believing that the study of statistics should be driven by applications 
rather than theory. Structuralists focus heavily on probability theory, mathematical 
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structure, and algorithms. Structuralists differ from traditionalists in that they 
believe in using applications as the basis for instruction. Structuralists differ from 
other groups in that their primary goal is to help students abstract mathematical 
structure from the applications rather than apply mathematical principles to make 
sense of situations students encounter outside of school.

Aspects of Eichler’s framework resonate with other researchers’ findings in 
regard to teachers’ beliefs about strategies and goals of statistics instruction. 
Sedlmeier and Wassner (2008) found that teachers believed it to be valuable to 
relate statistics content to daily issues (similar to everyday life preparers), but did 
not believe in placing as much emphasis on student data gathering or student inter-
ests. Pierce and Chick (2011) found that some teachers believe in teaching proce-
dures first and then using applications merely to try to make the procedures more 
interesting. Such a strategy may reflect application preparer and/or structuralist ten-
dencies. Comprehensively mapping the relationships between observed teaching 
strategies and specific beliefs about the goals of statistics instruction is an interest-
ing empirical task for which some infrastructure currently exists, and it awaits addi-
tional research attention.

10.3.1.3  Self-Efficacy Beliefs About Teaching Statistics

Harrell-Williams, Sorto, Pierce, Lesser, and Murphy (2014) argued that it is impor-
tant to measure self-efficacy to teach statistics. Teacher self-efficacy can be defined 
as a teacher’s belief that he or she has the ability to bring about student learning 
(Ashton, 1985). Harrell-Williams et al. synthesized existing research to conclude 
that self-efficacy influences teachers’ choices of instructional techniques and stu-
dents’ learning. They argued that it is particularly important to consider self- efficacy 
in regard to teaching statistical investigations. Such a domain-specific portrait of 
teacher self-efficacy is potentially more informative to teacher educators than more 
generic assessments.

10.3.2  Attitudes

There is a voluminous body of research on individuals’ attitudes toward statistics 
(Nolan, Beran, & Hecker, 2012), but literature about teachers’ attitudes toward statis-
tics is more sparse (Estrada, Batanero, & Lancaster, 2011). Available research sug-
gests that teachers tend to value statistics as a subject but find it difficult to enjoy, 
teach, and learn (Estrada, Batanero, Fortuny, & Díaz, 2005; Martins, Nascimento, & 
Estrada, 2012). Teachers’ attitudes toward statistics are potentially important because 
they are hypothesized to relate to their persistence in gaining statistical knowledge 
(Estrada et  al., 2005) and willingness to teach the subject (Leavy, Hannigan, & 
Fitzmaurice, 2013). Teachers’ attitudes toward statistics are hypothesized to influence 
their knowledge of statistics, their teaching practices, and their students’ attitudes 
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(Martins et  al., 2012). Several attitude-related hypotheses, however, await strong 
empirical support. In studies of the impact of attitudes on teachers’ content knowl-
edge, for example, researchers have found moderate to low correlations (Hannigan, 
Gill, & Leavy, 2013; Nasser, 2004). Negative attitudes toward statistics appear to be 
clearly detrimental (Onwuegbuzie, 2000), but there seems be a limit on the extent to 
which positive attitudes relate to increased knowledge (Hannigan et al., 2013).

It appears that the field has not yet made a strong distinction between “teachers’ 
attitudes toward statistics” and “attitudes toward teaching statistics.” Although 
assessment items about attitudes toward teaching statistics have been included in 
some research studies (Martins et al., 2012; Pierce & Chick, 2011), many studies of 
teachers’ attitudes have used instruments intended to measure the attitudes of the 
general population (Estrada et al., 2011; Hannigan et al., 2013). This might explain 
why empirical evidence about the impact of attitudes is elusive. If, for example, the 
field were to systematically conceptualize and investigate teachers’ attitudes toward 
pedagogical elements such as statistics curriculum, children’s statistical learning, 
and technology for teaching statistics, might we better understand the impact of 
teachers’ attitudes on statistics teaching and learning?

10.4  Methods for Assessing Statistics Teachers’ Cognition 
and Affect

Assessments of cognition and affect related to teaching statistics come in a variety 
of forms, spanning the spectrum of written assessments, interviews, and observa-
tions. Many studies make use of more than one type of assessment and may involve 
more than one aspect of teachers’ cognition and affect. Below, a representative 
sample of assessments is discussed. Due to the scope of the chapter, we focus on 
assessments specifically designed for teachers rather than general standardized 
scales of cognition and affect that are sometimes used as part of research with 
teachers.

10.4.1  Written Assessments

Written assessments are often the most practical way to gather information from 
large groups of teachers. One such assessment, the Diagnostic Teacher Assessment 
of Mathematics and Science, includes a separate scale of multiple-choice and open- 
ended items for statistics (Saderholm, Ronau, Brown, & Collins, 2010). The LMT 
project also designed a scale of multiple-choice items specific to teaching statistics 
(G. Phelps, personal communication, June 11, 2010). An international comparison 
of teacher education, the Teacher Education and Development Study in Mathematics, 
included some items on pedagogical content knowledge for statistics among items 
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pertaining to mathematics, though algebra, geometry, and number were more 
heavily assessed (Blömeke & Delaney, 2012).

Some studies of teachers’ affect in regard to statistics and statistics teaching have 
used collections of questions from larger scales intended for a broad population. 
Estrada and Batanero (2008), for example, used a subset of items from the Survey 
of Attitudes Toward Statistics (Schau, Stevens, Dauphine, & del Vecchio, 1995) that 
had previously yielded lower scores for teachers. More recently, Harrell-Williams 
et al. (2014) designed a scale to assess teachers’ self-efficacy to teach statistics. It 
measures teachers’ feelings of preparedness to teach content from the Guidelines 
for Assessment and Instruction in Statistics Education (GAISE) report for grades 
pre-K–12 (Franklin et  al., 2007). This sort of assessment, which is specifically 
designed and psychometrically tested to measure affect in regard to teaching statis-
tics, is relatively rare.

Some written assessments deal with both cognition and affect related to teaching 
statistics. Watson (2001) designed a survey to assess teachers’ pedagogical content 
knowledge, self-efficacy to teach statistics, and beliefs about the value of statistics. 
Watson, Callingham, and Donne (2008) built on this survey to devise a 12-item scale 
of pedagogical content knowledge. The Statistics Teaching Inventory (Zieffler, Park, 
Garfield, del Mas, & Bjornsdottir, 2012) contains questions about statistics teachers’ 
teaching practices, course characteristics, assessment practice, teaching beliefs, and 
assessment beliefs. González (2014) designed a written assessment of teachers’ sub-
ject matter knowledge, pedagogical content knowledge, and beliefs and conceptions 
of variability. Instruments that assess aspects of both cognition and affect have the 
potential to help researchers understand complex relationships among teacher char-
acteristics such as knowledge, beliefs, attitudes, goals, and teaching practices.

10.4.2  Interviews

Clinical interviews allow a high degree of interactivity between the researcher and 
study participants. They are more time intensive than written assessments. Interviews 
come in a variety of forms. They may be driven by a formal protocol, such as the 
StatSmart teacher interview protocol (Watson & Nathan, 2010), which probes the 
nature of teachers’ subject matter knowledge and pedagogical content knowledge. 
More often, however, interview tasks and questions are designed to meet the spe-
cific objectives of a research study. For example, Noll (2011) interviewed graduate 
assistants to assess their statistical content knowledge of sampling. Participants 
were asked about written items they had completed and were given some new tasks 
to solve. Similarly, Browning, Goss, and Smith (2014) conducted interviews with 
preservice teachers to gain better understanding of the thinking they employed 
while solving written statistical tasks. Other studies incorporating interviews have 
probed subjects such as teachers’ classroom practices (Casey, 2010), beliefs about 
the nature of statistics (Leavy et al., 2013), and perceptions of professional develop-
ment sessions (Peters, Watkins, & Bennett, 2014).
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10.4.3  Observations

Written assessments and interviews provide proxies of teachers’ classroom practices 
and quality of instruction, but observation techniques allow researchers to see these 
firsthand. Using structured observations, researchers can infer the nature of teach-
ers’ SKT and knowledge of statistical investigations. For instance, Burgess (2011) 
illustrated how an SKT framework can guide such observations of teachers’ prac-
tice. Casey (2010) described an observation-based process for assessing knowledge 
for teaching statistical association. Pfannkuch (2006) used observations to describe 
a teacher’s knowledge of comparing distributions with box plots. Jacobbe and 
Horton (2010) used observations of teachers’ lessons to detect their misconceptions 
related to data displays.

Another strategy is to observe teachers’ interactions during professional devel-
opment sessions. Although these are not always firsthand observations of teaching, 
they still provide data that may not be easily obtained through interviews or written 
tasks. Wilson  et  al. (2011) studied video of teacher education sessions to better 
understand teachers’ pedagogical content knowledge in connection with the use of 
dynamic statistics software. Peters et al. (2014) observed how teachers’ learning of 
measures of center developed as they interacted with one another. Leavy (2010, 
2015) observed prospective teachers involved in lesson study. Lesson study engages 
a group of teachers in planning a lesson, carrying it out, observing students’ reac-
tions, and then debriefing on the lesson’s effectiveness. Observations of these activi-
ties provide a window into teachers’ thinking about planning and analyzing lessons. 
In general, teachers’ discourse with one another during professional development 
can help explain the nature and origin of the knowledge and beliefs that guide their 
instruction.

Observations of teachers’ lessons and professional development sessions typi-
cally yield a variety of artifacts. These may include written lesson plans (Garfield & 
Ben-Zvi, 2008), statistical tasks a teacher assigns to a class (Burgess, 2011), field 
notes (Casey, 2010), and teachers’ responses to professional development tasks 
(Wilson et al., 2011). Artifacts of this nature can be synthesized with other data to 
help researchers develop portraits of teachers’ cognitive and affective characteris-
tics related to teaching statistics.

10.5  Research on Teachers’ Statistical Knowledge

The research models, constructs, and techniques described up to this point in the 
chapter have been used in studies spanning various statistical content areas. In this 
section, we summarize findings from two broad, interrelated bodies of literature 
about teachers’ knowledge related to data (Sect. 10.5.1) and uncertainty and statisti-
cal inference (Sect. 10.5.2).
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10.5.1  Research on Data

We present a brief overview of research on teachers’ subject matter knowledge and 
pedagogical content knowledge in regard to data displays, distribution and variabil-
ity, associations between variables, and statistical literacy, reasoning, and thinking.

10.5.1.1  Data Displays

Studies of preservice or practicing teachers’ graph reading and interpretation skills 
show a tendency to underestimate the complexities of learning and teaching graphi-
cal representations (Leavy, 2010). Teachers tend to express confidence in their 
understandings of graphical representations and to feel better equipped to teach this 
topic compared to other statistical ideas (González & Pinto, 2008; Watson, 2001). 
However, despite their positive attitudes and confidence toward teaching graphs, 
many educators have limited subject matter knowledge of graphical representations 
(González & Pinto, 2008; Jacobbe & Horton, 2010; Pierce & Chick, 2013; Sorto, 
2004). They sometimes confuse histograms with bar diagrams (Bruno & Espinel, 
2009), fail to integrate graphical knowledge with problem context (Burgess, 2002), 
and have trouble with graph selection and understandings of data type (Leavy, 
2010). Monteiro and Ainley (2007) introduced the idea of “critical sense” as a key 
skill in the analysis and interpretation of graphical artifacts. They investigated criti-
cal sense in graphing among prospective primary school teachers from Brazil and 
England. They found that many preservice teachers did not have adequate mathe-
matical knowledge to read graphs from the daily press. However, the majority dis-
played an ability to think critically and justify their ideas by combining statistical 
knowledge with personal experience and contextual knowledge.

A small number of studies have examined teachers’ pedagogical content knowl-
edge of graphs. González and Pinto (2008) concluded that teachers need more 
knowledge of the process of learning statistical graphs and the difficulties that stu-
dents might have with them. Espinel, Bruno, and Plasencia (2008) observed lack of 
coherence between prospective primary teachers’ graph building and their evalua-
tion of tasks carried out by fictitious future students. Heaton and Mickelson (2002) 
observed that graph construction often became the endpoint of statistical investiga-
tion for preservice elementary teachers, who focused on the technical aspects of 
graph construction rather than on engaging children in reasoning with the data. 
However, some studies indicate that using dynamic data exploration tools (e.g., 
Finzer, 2002; Konold & Miller, 2011) can help teachers portray graph production as 
a means for understanding data rather than an end in itself (Meletiou-Mavrotheris, 
Mavrotheris, & Paparistodemou, 2011).
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10.5.1.2  Distribution and Variability

Much of the research investigating teachers’ reasoning with distributions has 
focused on their understanding of measures of central tendency, measures of vari-
ability, distributional thinking, and procedural aspects of statistics. Pedagogical 
content knowledge has also been explored.

Studies examining teachers’ conceptions of measures of center have focused on 
the arithmetic mean (e.g., Batanero, Godino, & Navas, 1997; Gfeller, Niess, & 
Lederman, 1999); the mean, median, and mode (e.g., Groth & Bergner, 2006; 
Jacobbe, 2012); and the general concept of average (e.g., Begg & Edwards, 1999; 
Estrada, Batanero, & Fortuny, 2004; Leavy & O’Loughlin, 2006). Evidence from 
such studies illustrates that attaining deep understanding of these statistical con-
cepts is nontrivial. Like students, many teachers struggle to view measures of cen-
tral tendency as representative (or “typical”) values. Although teachers can readily 
calculate the mean, they tend not to use it to compare groups (Canada, 2004; 
Hammerman & Rubin, 2004; Leavy & O’Loughlin, 2006; Makar, 2004; Makar & 
Confrey, 2002, 2004; Peters, 2009). Like students, teachers may rely upon proce-
dural algorithms and need conceptual understanding (Gfeller et al., 1999; Leavy & 
O’Loughlin, 2006; Peters et al., 2014; Sorto, 2004).

As with measures of center, teachers’ understandings of standard deviation and 
other formal measures of variation tend to be procedural (Leavy, 2006; Makar & 
Confrey, 2005; Sorto, 2004). Research indicates difficulties with the concept of 
variability for teachers of various grade levels (Mooney, Duni, van Meenen, & 
Langrall, 2014; Vermette, 2013) and similar misunderstandings to those seen in 
students (e.g., perceiving the normality shape of a distribution as an indication of 
low variability). Teachers often hold competing beliefs about random variation 
when the setting of a problem changes (Canada, 2004; Makar, 2004). Kuntze (2014) 
found that some secondary teachers did not consider learning about statistical varia-
tion to be an important instructional goal, though others did recognize the impor-
tance of teaching the concept.

Measures of center and measures of spread are inseparable. Conceptual under-
standing of standard deviation, for example, requires “a dynamic conception of dis-
tribution that coordinates changes to the relative density of values about the mean 
with their deviation from the mean” (Peters, 2009, p. 21). Teachers often have dif-
ficulty coordinating understandings of central tendency and dispersion (Dabos, 
2014; Lee & Lee, 2011). Many teachers tend to focus either only on the center of 
the distribution, or on its range, or on small clusters or individual points, rather than 
integrating different aspects of data distributions (Canada, 2008; Makar & Confrey, 
2005; Mooney et al., 2014). When beginning to reason about distributions, teachers 
can be encouraged to use informal terminology to describe spread and distribution, 
such as “clump,” “bump,” “bulk of this data,” “scattered,” and “bunched” (Canada, 
2004; Makar, 2004; Makar & Confrey, 2005). Since children use similar language 
(e.g., Bakker & Gravemeijer, 2004), Makar and Confrey (2005) suggested recogniz-
ing and valuing this informal “variation talk” as a way to encourage intuitive statisti-
cal sensemaking.
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Explorations with dynamic data software can also help improve teachers’ 
distributional reasoning and pedagogical content knowledge (Canada, 2004; 
Hammerman & Rubin, 2004; Leavy, 2006; Lee & Lee, 2011; Makar, 2004; 
Meletiou-Mavrotheris, Paparistodemou, & Stylianou, 2009; Peters et al., 2014). For 
example, Meletiou- Mavrotheris and Serradó (2012) reported on EarlyStatistics, an 
intercultural professional development course in which teachers took part in authen-
tic educational activities. The activities gave them the opportunity to reflect on the 
“big ideas” of statistics and their applications and to explore ways of improving 
statistics instruction through the adoption of a coherent technology-rich curriculum 
based on the statistical problem-solving process. Findings from the study indicated 
that EarlyStatistics met its objectives, improving teachers’ knowledge of key statis-
tical ideas including distributions. Data obtained from follow-up teaching interven-
tions in some of the participants’ classrooms suggested positive gains in student 
learning and attitudes toward statistics (Meletiou-Mavrotheris et al., 2011).

10.5.1.3  Associations Between Variables

Some researchers have designed instruction to help teachers confront their potential 
misunderstandings of association and those of their students. Batanero, Estepa, and 
Godino (1997) examined whether a computer-based teaching experiment would 
improve preservice teachers’ understanding of association. They found improve-
ment in covariational strategies and reduction in deterministic concepts of associa-
tion. However, they also found that most teachers retained the belief that a strong 
association between two variables is adequate for drawing conclusions about cause 
and effect. Casey (2010) observed three experienced secondary teachers as they 
taught statistical association and interviewed them immediately following each 
observation. The research showed that to meet the demands of teaching, the teachers 
needed substantial knowledge of the concepts’ underlying statistical association. 
For example, they needed to know not only how to compute the value of a correla-
tion coefficient but also why it was computed as it was and the implications of the 
computation. Teachers also need to understand the nature of informal lines of best 
fit and criteria for placing them on graphs. Casey and Wasserman (2015) found that 
teachers hold a variety of conceptions of informal lines of best fit and how they 
should be placed. Despite the different conceptions, teachers positioned informal 
best fit lines in approximately the same place the least-squares regression line would 
appear in a scatterplot.

Along with subject matter knowledge of association, teachers need pedagogical 
content knowledge. Casey (2014) synthesized the results of three research studies 
centered on the teaching and learning of linear regression to describe the knowledge 
needed by teachers regarding learners’ conceptions of linear regression. The synthe-
sis illustrated that the knowledge needed to teach linear regression differs in signifi-
cant ways from the knowledge needed to teach linear functions. Quintas, Ferreira, 
and Oliveira (2014) compared and contrasted the pedagogical content knowledge of 
two experienced secondary mathematics teachers as they taught bivariate data. The 
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teachers had difficulty helping students reason about bivariate relationships. It was 
challenging for them to teach aspects of structure and strength, model fitting, and 
the role of the linear regression model in predicting events. Both teachers exhibited 
some of the common misunderstandings and errors with regard to bivariate relation-
ships identified in the literature (e.g., Engel & Sedlmeier, 2011). Such findings indi-
cate a need to design professional development that strengthens teachers’ content 
knowledge and pedagogical content knowledge for teaching association in 
tandem.

10.5.1.4  Statistical Literacy, Reasoning, and Thinking

The development of students’ statistical literacy has become an overarching goal of 
statistics education internationally. This broadening of the curriculum to encompass 
statistical literacy, reasoning, and thinking has put considerable demands on teach-
ers (Hannigan et al., 2013). In particular, they must design lessons with engaging 
contexts (Chick & Pierce, 2008), focus on conceptual understanding (Watson, 
2001), and pose critical questions (Reston, Jala, & Edullantes, 2006).

Research sheds light upon factors that influence the design and implementation of 
instruction that fosters students’ statistical literacy, reasoning, and thinking. Burgess 
(2011) found that the students of a teacher with well-developed SKT were able to 
progress further with statistical investigations than students of a teacher whose knowl-
edge was less developed. Callingham and Burgess (2014) conjectured that the national 
curriculum under which teachers operate may influence their approach to teaching 
statistics, since Australian teachers in their study tended to focus more on procedural 
aspects of instruction than did their counterparts from New Zealand. Makar and 
Fielding-Wells (2011) found that challenges in teaching statistical inquiry may stem 
from difficulties coping with the uncertainties of inquiry, managing classroom logis-
tics, and developing the requisite content knowledge. Mickelson and Heaton (2004) 
found that the ability to translate content knowledge into effective teaching practices 
is complex and urged researchers to team with classroom teachers in order to help 
design meaningful experiences for students. Indeed, during the past decade, several 
researchers have been experimenting with new innovative models of preservice and 
in-service teacher training that are focused on inquiry-based instruction and on statis-
tical problem-solving (e.g., Garfield & Ben-Zvi, 2008; Groth, Bergner, Burgess, 
Austin, & Holdai, 2016; Makar & Fielding-Wells, 2011; Meletiou-Mavrotheris & 
Serradó, 2012; Serradó, Meletiou- Mavrotheris, & Paparistodemou, 2014).

10.5.2  Research on Uncertainty and Statistical Inference

Uncertainty and statistical inference are challenging ideas for teachers, just as they 
are for the general population. Researchers have documented teachers’ understand-
ing of theoretical probability (Batanero & Díaz, 2012; Watson, 2001), empirical 
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probability (Dollard, 2011; Groth, 2010; Theis & Savard, 2010), informal inference 
(Canada, 2008; Pfannkuch, 2006), samples and sampling distributions (Green, 2010; 
Green & Blankenship, 2014; Groth & Bergner, 2005; Maxara & Biehler, 2010; Noll, 
2011), and formal inference (Liu & Thompson, 2009; Thompson & Liu, 2005).

Sound reasoning about uncertainty and inference require a departure from deter-
ministic modes of thinking. Such modes of thinking influence teaching practices. 
Serradó, Azcárate, and Cardeñoso (2006), for example, found that deterministic 
beliefs about the nature of statistics prevented some teachers from embracing cur-
ricular goals related to probability and uncertainty. Liu and Thompson (2009) found 
that the majority of the high school teachers in their study tended to think determin-
istically. This made it difficult for the teachers to understand and portray hypothesis 
testing as a tool for drawing inferences.

Research suggests that enhancing teachers’ subject matter knowledge about 
uncertainty and statistical inference must be given high priority. Building teachers’ 
knowledge of pedagogical structures and tools by itself is not sufficient. Lee and 
Mojica (2008), for example, found that although a group of teachers involved their 
students in authentic statistical inquiry that included use of simulation tools, they 
missed the chance to develop students’ understanding of the frequentist approach to 
probability because of limited subject matter knowledge. Deep understanding of 
probability is also needed for identifying student errors and implementing effective 
teaching practices (Maher & Muir, 2014; Paparistodemou, Potari, & Pitta, 2006). 
Such understanding can be developed through well-designed professional develop-
ment. For example, Theis and Savard (2010) helped high school teachers design and 
implement a technology-based instructional intervention. They found that the use of 
simulation software within the intervention allowed teachers to adopt more inquiry- 
oriented strategies and begin to incorporate frequentist probability.

Although having subject matter knowledge is necessary for effective teaching of 
uncertainty, it is not sufficient. Leavy (2010) worked with a group of prospective 
teachers who demonstrated relatively strong subject matter knowledge about infor-
mal inference. However, they had trouble using this knowledge to develop peda-
gogical contexts for advancing children’s learning. In particular, they had difficulty 
choosing sufficiently complex data, creating engaging contexts, handling unex-
pected student responses, and scaffolding children’s thought processes. In other 
studies, gaps in pedagogical content knowledge have been framed as contributing 
factors to teachers’ failure to emphasize important probability concepts when writ-
ing lesson plans (Chick & Pierce, 2008) and designing productive learning environ-
ments for students (Groth, 2010). Accordingly, researchers have begun to develop 
techniques capable of assessing both subject matter knowledge and pedagogical 
content knowledge (Meletiou-Mavrotheris, Kleanthous, & Paparistodemou, 2014) 
and to monitor and adjust their professional development efforts to ensure that they 
facilitate teachers’ development of both of these aspects of SKT (Lee & Hollebrands, 
2008; Serradó et al., 2014).
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10.6  Teacher Education Frontiers

As illustrated in this chapter and in other reports on statistics teacher education 
(Franklin et al., 2015), developing cognitive and affective characteristics related to 
teaching statistics is a complex process deserving concentrated research attention. 
Such research attention is particularly important in light of the move away from 
traditional methods of teaching statistics (Batanero & Díaz, 2012). In order to better 
fulfill teachers’ needs in a reform-oriented context, alternative approaches to teacher 
education have become prevalent. Some alternative approaches are situated within: 
the context of teachers’ classroom practice, deep exploration of statistical content, 
and technological environments. To conclude the chapter, we summarize some of 
the work done using these approaches. We do so to encourage others to continue to 
develop and extend the approaches. We also foreshadow Chap. 12, which describes 
approaches to professional development in greater detail.

10.6.1  Learning from Teaching Practice

In practice-based approaches, teachers use real classrooms as sites for investigation. 
Lesson study is one example. Leavy (2010, 2015) used lesson study to develop pro-
spective teachers’ knowledge and ability to teach informal inferential reasoning and 
data handling. Roback, Chance, Legler, and Moore (2006) used lesson study to refine 
their own approaches to teaching inference. Other practice-based approaches involve 
researchers collaborating with teachers to design, implement, and analyze instruc-
tion. For example, Noll and Shaughnessy (2012) reported on a project in which 
teachers teamed with five university researchers to design and co-teach lessons to 
investigate secondary students’ conceptions of variability. They found the project to 
be mutually beneficial; teachers and researchers learned from one another during 
collaboration. Groth et al. (2016) collaborated with prospective teachers to design 
instruction suitable for meeting students’ learning needs in regard to measures of 
center and involved the prospective teachers in the process of disseminating the 
results (Groth, Kent, & Hitch, 2015). Under such approaches, the line between teach-
ers and researchers is intentionally blurred in order to engage teachers in some of the 
same types of systematic classroom inquiry that are characteristic of formal research.

10.6.2  Immersion in Statistical Content

Examples of approaches that immerse teachers in deep exploration of statistics con-
tent can be found at the primary, secondary, and tertiary levels. Reston (2012) 
explored in-service elementary teachers’ conceptions of probability, finding that 
problem-based learning, inquiry, and statistical investigations promoted stronger 
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conceptual understandings of probability and enhanced pedagogical skills. Makar 
and Confrey (2002) immersed secondary teachers in focused investigations about 
student data and studied their statistical reasoning when comparing two groups. 
They concluded that such an immersion model can help improve teachers’ concep-
tual understanding of inference, their instructional practices, and their disposition 
toward inquiry. Bargagliotti et al. (2014) developed materials capable of promoting 
secondary teachers’ deep immersion in the study of variability and regression. At 
the tertiary level, Green and Blankenship (2014) designed a course to develop teach-
ing assistants (TAs) as statistics educators. The course focused on how TAs can 
foster critical thinking and enhance learning in their classrooms. The TAs left the 
course with improved conceptual understanding of sampling distributions and strat-
egies for teaching and assessing students.

10.6.3  Technological Environments

Numerous studies have investigated the use of dynamic statistical packages (Finzer, 
2002; Konold & Miller, 2011) to develop teachers’ knowledge for teaching con-
cepts such as sampling distributions, the central limit theorem, confidence intervals, 
and hypothesis testing (e.g., Garfield & Everson, 2009; Maxara & Biehler, 2010; 
Meletiou-Mavrotheris et al., 2014). Such studies indicate that teachers’ experimen-
tation with statistical ideas through investigations of authentic and computer- 
simulated data can help them develop informal inferential reasoning, construct 
more sophisticated understandings of the logic of inferential statistics, and improve 
their repertoire of teaching strategies related to statistical inference. Those inter-
ested in exploring the potential of dynamic statistics software for supporting teach-
ers’ learning can take advantage of resources such as Lee and Hollebrands’ (2008) 
teacher education curriculum that incorporates the software and Madden’s (2011) 
framework describing the characteristics of statistically, contextually, and/or tech-
nologically provocative tasks.

Along with dynamic statistics software environments, there are many other tech-
nological frontiers to continue to explore for teacher education. These include 
online communities, mobile devices, and the use of big data in relation to assess-
ment and instruction. Environments and tools of this nature help break traditional 
boundaries of time, location, and extent of teacher learning (Koehler & Mishra, 
2008). As relatively new, emerging technologies, much of the story of their impact 
on statistics teachers’ learning remains to be written.

10.7  Conclusion

Research on cognition and affect related to teaching statistics is a relatively new 
endeavor. Several opportunities for future research are identified in this chapter. 
Work remains to be done to more clearly define the elements of SKT, their 

10 Research on Statistics Teachers’ Cognitive and Affective Characteristics



346

relationships among one another, and the mechanisms through which they develop. 
As this work is carried out, it will be important to reconcile and refine different SKT 
models through systematic academic discourse among researchers working from 
diverse inquiry paradigms. We also need better understanding of interactions among 
affect, cognition, and teaching practices. We know that teachers’ goals, beliefs, and 
attitudes influence teaching practices to an extent. The precise nature of the types of 
goals, beliefs, and attitudes that are most relevant and their degree of impact need 
further investigation. Additionally, we need better understanding of teachers’ 
knowledge of the impact of social and environmental factors on students’ achieve-
ment and interest in statistics and their levels of preparedness to help diverse popu-
lations of students learn statistics.

Qualitative and quantitative approaches each have roles to play as research on 
cognition and affect for teaching statistics continues to develop. Some psychometri-
cally and theoretically sound quantitative instruments specific to teaching statistics 
exist, but many studies still have to rely on instruments developed for the general 
population. Qualitative research can help define the salient cognitive and affective 
characteristics to be assessed and can provide vivid portraits of how such character-
istics may develop under different circumstances. As this work occurs, we can gain 
progressively better understanding of teachers’ mediating role between statistical 
content and students.
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Part III
Contemporary Issues and Emerging 
Directions in Research on Learning  

and Teaching Statistics

Janet Ainley and Dave Pratt

In this part of the handbook the focus is on looking forward to anticipate future 
directions for research in statistics education. The section contains four survey 
chapters, exploring theoretical frameworks (Chap. 11), the curriculum (Chap. 12), 
building capacity in teacher education (Chap. 14), and the design of learning envi-
ronments (Chap. 16). In each of these the authors have considered issues which are 
of current concern for statistics education research, and built on these to raise ques-
tions which they feel should be addressed in future research. Interspersed with these 
are two “Reflections” chapters, edited by Rob Gould, which are collections of 
shorter pieces of writing. In Chaps. 13 and 15 experienced researchers and curricu-
lum developers from a wide range of backgrounds reflect on aspects of statistics 
education and offer suggestions for the future.

Despite the diversity of focus of the six chapters, some common themes emerge 
which have important implications both for developments in the learning and teach-
ing of statistics and for the research which can inform those developments. Rather 
than describing the contents of individual chapters, in this introduction we discuss 
three themes which we see as particularly significant for statistics education research 
in the future: the need for an holistic approach to change, the importance of statisti-
cal literacy for engaged citizenship, and the vital role of technology.

The need for change to be driven by holistic approaches which engage with the 
complexity of learning and teaching in real classrooms is echoed in much of the 
writing in Part III. Approaches which aim to identify and improve individual aspects 
of pedagogy, such as the introduction of a new digital tool, a change in curriculum 
structure or assessment procedures, or novel delivery of professional development, 
have had successes within specific fields, but often very limited impact on sustained 
improvement. Such initiatives are all too easily overwhelmed by other constraints: a 
new classroom resource may be overlooked if it does not relate to high stakes assess-
ments; changes in the curriculum can only be effectively implemented if teachers 
have suitable professional development; a new approach to teaching one concept or 
technique may be at odds with the overall pedagogic style of the classroom.

There is a very real challenge for research here. Piecemeal changes are gener-
ally supported by research approaches that are designed to avoid complexity by 
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focusing on trying to isolate particular aspects of classroom context and measure 
the effectiveness of making changes to these. Acknowledging the need for holis-
tic change requires research methodologies which engage with complexity, rather 
than trying to manage it. Nilsson et al. in Chap. 11 discuss design research as a 
means to sensitize the researcher or a team of researchers to a complex ecology. 
They explain that such approaches seek to develop new theories, including onto-
logical innovations, that might in the future offer accounts of holistic learning 
environments as envisaged by Ben Zvi et al. in Chap. 16.

A significant constraint on the development of the learning and teaching of sta-
tistics is the status that statistics has in the school curriculum. This varies from 
country to country, but often statistics is part of the mathematics curriculum, and so 
competes for time and attention with other areas of mathematics. Ponte and Noll 
refer in Chap. 14 to the relative lack of confidence which many mathematics teach-
ers have about teaching statistics (as well as how teacher education courses might 
begin to address that). As a result, statistics is always in danger of being squeezed 
into corners of the timetable, and thus seen as largely unimportant for most students. 
Those students who need statistical skills to support their study in science or social 
science will be given tailored courses at College or University. At school level, sta-
tistics may be given the minimal attention needed to prepare students for external 
examinations.

Perhaps the low level of attention currently given to statistics in schooling con-
tributes to the second theme emerging from the chapters in Part III: the growing 
need for all citizens to have some level of statistical literacy. Increasingly a wide 
variety of data are presented in advertising and news media, and drawn on in politi-
cal debates, leaving those who are unable to adopt a critical perspective open to 
misleading arguments. New approaches to statistical literacy are beginning to 
emerge. For example, in the reflections presented in Chap. 15, school students 
explore personally meaningful issues through data in the public domain, and jour-
nalists use socially and politically oriented data to enhance their statistical 
appreciation.

In Chap. 12, Pfannkuch imagines a much richer curriculum than what is gener-
ally currently available to students, immersing students in data in ways that might 
eventually lead to widespread statistical literacy. In the first set of reflections follow-
ing Chap. 12, there is discussion about new developments that will support a data- 
rich society. Pfannkuch recognizes that such a curriculum would need to be taught 
by teachers who have experienced the training methods proposed by Ponte and Noll  
in Chap. 14.

Underpinning both the need for holistic approaches and the need for critical sta-
tistical literacy is the role of technology, which gives access to data and provides the 
analytical tools in computer-based environments that support learners of all ages to 
present, represent, and model data. In the reflections in Chap. 15, there is discussion 
about how technology supports access to data and the need for students to learn 
technological skills that give them access to powerful tools.

In summary, we regard the three emerging themes as powerful indicators of 
where statistics education might seek to grow in the next decade or two.
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Chapter 11
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Education
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Abstract This chapter presents a literature review of theories used to frame  
and underpin Statistics Education Research. The aim is to describe, characterize and 
arrange the nature and use of theories in SER and hint at some potential trends and 
required directions for further theorizing the SER discipline. The review includes 
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We distinguish five types of theories used in SER: Statistical Product Theories, 
Statistical Process Theories, Theories with a Didactical Focus, Theories in 
Mathematics/Science Education and Theories with a Broader Range on 
Epistemological Aspects. For further theoretical elaboration, we argue that SER pay 
attention to the relationship between personal and formal views of statistics, to the 
dynamics between categories or levels in student thinking and to the role of technol-
ogy and context in the learning of statistics and probability. We end the chapter by 
thinking through potential benefits of a semantic theory, inferentialism, that has 
been proposed as underpinning research on statistical inference.

Keywords Theory • Scientific quality • Literature review • Inferentialism • 
Empirical studies • Primary and secondary school

11.1  Introduction

This chapter focuses on theories in Statistics Education Research (SER). Theories 
are crucial to scientific work. The development of the scientific culture of a disci-
pline is critically linked to how the discipline takes into account and contributes to 
the development of theories (Feuer, Towne, & Shavelson, 2002). By means of theo-
ries and theorizing, scientific work aims at bringing order to complex phenomena in 
order to understand them and explain them and being able to predict their behaviour 
(Bikner-Ahsbahs & Prediger, 2010; Sriraman & English, 2010). Theories support 
the researcher to build on others’ work, achieve scientific trustworthiness, go beyond 
common sense, generalize across situations, make valid and reliable interpretations 
and so on (Bakker & Smit, 2017; Lester, 2010; Silver & Herbst, 2007).

Despite the crucial role of theory for development and quality of scientific 
research, Lester (2010) raises concerns about a lack of theory and philosophy in the 
current culture of mathematics education research. In our view, the SER research 
community needs to take these concerns seriously in order to inform practice and to 
promote incitements for further development of SER as a scientific discipline.

Taking a meta-perspective on research in SER through the lens of theories is 
timely for two reasons. Firstly, as disclosed by the different chapters of the present 
handbook, the main mission of SER is to study and improve the teaching and learn-
ing of statistics, which means that SER includes many epistemological concepts and 
processes that require a theoretical treatment. Without a theoretical elaboration of 
epistemological and methodological decisions, it becomes difficult to assess the 
scientific quality of research and to compare and build on research. Secondly, the 
interest in SER has increased immensely over the past decades, which can be seen 
in the increased proportion of publications of SER in scientific journals but also 
increased attention to statistics in curricula in many countries. However, an increased 
quantity of research does not necessarily imply that the quality of research has 
increased in the same proportion. There are many factors affecting an increasing 
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proportion of published research. For instance, many universities base their alloca-
tion of research funding on the number of publications and citations researchers can 
present.

As a result, we have a closer look at what this growth actually entails in terms of 
theories used to frame and underpin SER. As far as we know, no such study has 
previously been conducted in SER. Theory is of course not a homogeneous cate-
gory; hence, there is a need to identify the types of theories used in SER, for what 
purposes theories are used, and to identify potential trends and required directions 
to strengthen the SER discipline further. To this end, the present chapter presents a 
literature review of the theoretical work apparent in SER over the past 11 years.

With the focus on theories, we emphasize that the review is not about topics and 
research findings of SER. Indirectly, of course, topics and findings come into play 
since theory and theorization in SER are brought to bear when studying some topic 
of learning or teaching statistics. Moreover, our review is to be considered a con-
figurative literature study (Gough, Oliver, & Thomas, 2013). This means that our 
ambition is to describe, characterize and arrange (configure) the nature and use of 
theories in SER and, based on this review, hint at some potential trends and required 
directions for further theorizing the SER discipline. For reasons of feasibility, we 
have restricted ourselves to empirical research on teaching and learning at the pri-
mary and secondary school level.

Whether research in statistics education uses theories depends of course on what 
is meant by theory. In this chapter, we explore theory in a broad sense. We are as 
inclusive as possible in order to account for the nature and use of types of theories 
emerging in empirical studies on teaching and learning in SER. We begin by ground-
ing the review process in a theoretical consideration of structural features of theo-
ries in the nearest educational discipline, that of mathematics education, and what 
different roles theories are supposed to take in the discipline of mathematics educa-
tion research. By this discussion, we lay the foundation for our methodological 
choices of developing and explicating our search strategies and how we approached 
the configurative analysis and synthesis of our mapping of theories used in SER.

11.2  The Contribution of Theories in Mathematics 
Education and Other Disciplines

As Groth (2015, p. 4) observed, “Statistics education has begun to mature as a dis-
cipline distinct from mathematics education.”1 In many ways, mathematics educa-
tion research has preceded SER, for example, in terms of domain-specific 
conferences and journals. SER further deploys many methodological and theoreti-
cal approaches that have shown their potential in mathematics education research, 
and much—but certainly not all—SER is being carried out by researchers with a 

1 We refer the reader to Chap. 2 in this volume for further discussion of the nature and history of 
statistics education.
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background in mathematics education. Hence it makes sense to start with literature 
on theories in mathematics education before we draw on more general literature.

Although there is no shared definition of theory and theoretical frameworks in 
mathematics education (Assude, Boero, Herbst, Lerman, & Radford, 2008; Bikner- 
Ahsbahs & Prediger, 2014), there seems to be some consensus that theory is an 
organized, consistent and coherent system of terminology, concepts and principles 
(Sriraman & English, 2010) and claims and predictions about some phenomenon 
(Niss, 2007). A theory is similarly characterized as a system of concepts and prin-
ciples that serve as means to explain observed phenomena, to make prediction of yet 
unobserved phenomena and to guide the researcher in asking questions, formulating 
hypothesis and identifying key variables and relationships to investigate (Silver & 
Herbst, 2007).

Mason and Waywood (1996) distinguish background theories and foreground 
theories in mathematics education. Background theories concern the theoretical 
foundation a study relies on. The distinction “plays an important role in discerning 
and defining what kind of objects are to be studied” (p. 1058). To conduct a pro-
found investigation of, for example, students’ concept formation in terms of frac-
tions, scholars would have to clarify theoretically what is meant by “concept” and 
“concept formation.” Background theories therefore refer to ontological and episte-
mological ideas as well as their methodological implications for investigating spe-
cific topics (cf. Bikner-Ahsbahs & Prediger, 2014). This is, for example, the case 
when Vygotsky’s (1978) learning theory or Biggs and Collis’s (1982) SOLO model 
is used in SER. Neither theory originates from mathematics or statistics education, 
but both frame the investigations. By contrast, some theories concern the object of 
study itself; these are foreground theories. “Foreground theories are local theories 
in mathematics education” (Bikner-Ahsbahs & Prediger, 2014, p. 6). Foreground 
theories are therefore related to the research objective and the research questions. 
For instance, Watson and Callingham’s (2003) hierarchy levels of developing con-
cepts of variation are a foreground theory in Reading’s (2004) article that addresses 
students’ descriptions of variation. In the context of SER, foreground theories typi-
cally relate to theoretical constructs in which statistical structures, ideas and con-
cepts are salient.

diSessa and Cobb (2004) detail the nature of different theories relevant for 
research in mathematics education. They distinguish between grand theories, ori-
enting frameworks, frameworks for action and domain-specific instructional theo-
ries. Skinner’s behaviourist theory and Piaget’s system theory of intellectual 
development are two examples of grand theories. Even if grand theories have a 
prominent position in educational research, they appear to be too general on their 
own to provide guidance for explaining and supporting the learning of specific 
mathematical topics. Orienting frameworks, such as constructivism (von Glasersfeld, 
1995) or communities of practice (Lave & Wenger, 1991), provide general support 
for specifying issues of learning, teaching and instructional design, whereas frame-
works for actions concern analytical constructs of a more or less general prescrip-
tive character (diSessa & Cobb, 2004). Domain-specific instructional theories are 
also of a prescriptive nature as they are typically specific to a domain or even 
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 learning trajectory of certain content and the means by which this trajectory can be 
supported. An ontological innovation is an explanatory construct that cuts across the 
aforementioned hierarchy and helps to do design work. diSessa and Cobb (2004) 
illustrated the idea of ontological innovations by referring to their own findings of 
socio-mathematical norms (Yackel & Cobb, 1996) and meta-representational com-
petence (diSessa & Sherin, 2000). The building blocks of probability literacy (Gal, 
2005) and Pratt’s (2000) resources related to students’ conceptualization of random-
ness could be considered two representatives of ontological innovations in the field 
of SER.

diSessa and Cobb’s (2004) categorization of theories does not only distinguish 
theoretical frameworks in terms of analytical level and character. It also points to the 
different efforts of educational research in using and developing descriptive, explan-
atory and prescriptive theoretical constructs (McKenney & Reeves, 2012; Silver & 
Herbst, 2007). The primary goal of descriptive theoretical constructs is to distin-
guish, narrate and characterize teaching and learning processes. A descriptive con-
struct contains limited explanatory power for why something happens or predictive 
power for how to act to make something happen. Explanatory theories help research 
understand practice, such as making research alert to what has created a certain 
phenomenon and disclosing the causes for why something is happening (Silver & 
Herbst, 2007). In contrast to descriptive theories, prescriptive theories provide ideas 
for how we can make things happen (McKenney & Reeves, 2012). A framework is 
prescriptive if it helps in providing advice for instructional planning and actions. 
Frameworks for actions and domain-specific instructional theories contain elements 
with a prescriptive nature (Bakker & van Eerde, 2015).

In educational research, it often occurs that descriptive concepts or theories are 
too easily used for prescriptive purposes (as observed by Säljö, 2003, 2011). We 
can think of communities of practice (Lave & Wenger, 1991), which were origi-
nally analytic tools for understanding what happened in naturalistic settings. 
However, they soon became used as prescriptive tools: Classrooms or even groups 
of students had to become communities of learners (Brown & Campione, 1994). 
Without careful consideration of this transition, what is known from descriptive 
research may be too easily translated to prescription, so projected on how educa-
tion should be shaped. For SER, let us consider a fictitious example. Konold, 
Higgins, Russell, and Khalil (2015) have made a famous distinction between ways 
in which students may view data sets, ranging from data as pointers, case values 
and classifiers up to aggregates. This is a descriptive categorization. Imagine what 
could happen if educators were not aware of this. If they slip from a descriptive 
hierarchy to the idea that statistics education should sequence activities along this 
hierarchy, they may assume that students have to consider data points as case val-
ues before they learn to see them as aggregates. Delineating instructional sequences 
on this assumption may actually hamper student development. Prescriptive ideas 
(e.g., the idea of growing samples discussed later) have a different nature: They 
suggest what could be done to achieve particular learning goals and what student 
answers can be expected.

11 The Nature and Use of Theories in Statistics Education
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The goal of the present chapter is to present a categorization of theories used in 
SER and to make recommendations for the future about the use of theory in 
SER. The review addresses the following research questions:

 1. What is the nature of theories used in Statistics Education Research?
 2. To what extent are different types and combinations of theories used in Statistics 

Education Research?

With input from the categorization or mapping, we then continue to discuss theo-
retical issues in SER and suggest possible directions to further theory development 
in SER.  We are not aware of a similar undertaking in mathematics education 
research. Lerman, Xu, and Tsatsaroni (2002) reviewed 20 years of theory develop-
ment in one journal, Educational Studies in Mathematics, but their study focused on 
topics, audience and relations of mathematics education research with other disci-
plines and relations to other official agencies.

11.3  Methods

We pursue these research questions by means of a configurative literature study 
(Gough et al., 2013) of existing research articles in SER, in which we were able to 
characterize the nature and use of theories in a systematic and manageable way.

Our review of theories in SER emphasizes the ways researchers ground their 
research in the introduction and theoretical background sections of their publica-
tions. We will not study how theories are actually put into action in the method-
ological or analytical work of a study. Of course it may be the case that an article 
reports on a theory in a substantial way in the background but fails in applying the 
theory later on in the analysis. Also, theories might only appear in the methods and 
analysis sections without being mentioned in the introduction and theory sections. 
We are aware that this may be the case and will take this into consideration when 
reflecting on our results of the mapping.

In order to arrange and characterize the nature and use of theoretical approaches 
in SER, we focus on empirical research articles. We characterize the landscape of 
theories in SER by observing and categorizing the theories that are being used as a 
basis of investigations in empirical research of SER.  In a subsequent step of the 
review, we elaborate on what can be inferred from this landscape.

11.3.1  Search Procedure

In the following, we describe our search process for developing our mapping of 
theories in SER. For manageability reasons, we restricted our search to a limited set 
of journals. In the field of SER, we chose:
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• Statistics Education Research Journal (SERJ)

In the field of mathematics education research, we included the three journals on 
the Web of Science list (as of 2015):

• Educational Studies in Mathematics (ESM)
• Journal for Research in Mathematics Education (JRME)
• Mathematical Thinking and Learning (MTL)

For being able to see trends of theory use, we decided to include roughly the last 
decade of publications: 2004 until February 2015. In the aforementioned journals, 
we searched for empirical articles.

11.3.2  Criteria for Inclusion of Articles

First, we focused on research in statistics education at the primary and secondary 
school level. We decided to exclude research on tertiary level (e.g., “Introductory 
statistics course tertiary students’ understanding of p-values” by Reaburn, 2014) or 
specifically at the university level (e.g., “Roles of technology in student learning of 
university level biostatistics” by Xu, Zhang, Su, Cui, & Qi, 2014). Our main reason 
for narrowing our focus down to the school years was to get a manageable selection. 
Here, we build on our experience that research conducted in relation to higher edu-
cation often rather emphasizes mathematical content in favour of epistemological 
theories about teaching and learning. However, we are aware that there are certain 
issues that require specific theories in the post-secondary or higher education pro-
grammes, which differ from teaching and learning issues at the primary and second-
ary school level. Research conducted on vocational education constitutes one such 
example as it typically deals with phenomena such as boundary crossing between 
school and work settings that are not prominent in general education (Bakker & 
Akkerman, 2014), though general education can learn much from vocational and 
professional practice (Bakker, 2014; Dierdorp, Bakker, van Maanen, & Eijkelhof, 
2014).

Second, we focused on research that addresses the epistemology of statistics edu-
cation, with a clear focus on students’ learning of statistics or probability. Therefore, 
we excluded articles that focused on, for example, students’ attitudes towards statis-
tics (e.g., “Students’ attitudes toward statistics across the disciplines: A mixed- 
methods approach” by Griffith, Adams, Gu, Hart, & Nichols-Whitehead, 2012), 
even though we acknowledge that the affective side of SER is extremely important 
and requires more attention. By restricting our focus to students’ learning, we also 
excluded articles that focused exclusively on teachers (e.g., “Using an APOS frame-
work to understand teachers’ responses to questions on the normal distribution” by 
Bansilal, 2014).

Third, we limited our search to articles that were published in English (e.g., the 
article by Mary & Gattuso, 2005, was excluded).
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11.3.3  Screening Process: Focus on Titles and Abstracts

Based on the aforementioned criteria, we screened the articles in order to select 
them for the following data analysis. The screening process that led to the selection 
of articles was conducted in two steps:

In the first step, we applied the aforementioned criteria on the titles of the arti-
cles. Here, we paid attention to signal words.

 1. Signal words that indicated an epistemological orientation.
Signal words such as “learning,” “understanding,” “thinking,” “awareness,” 

“conceptions” and “conceptual,” “reasoning,” “inference,” “tasks,” “activity,” 
“interaction,” “strategies,” “representations,” “teaching,” “instruction,” etc. indi-
cated an inclusion of the articles.

 2. Signal words that indicated the school level.
Signal words such as “university,” “workplace,” “tertiary,” “vocational,” etc. 

led to an exclusion of the articles, unless there were other aspects in the title that 
led to an inclusion (e.g., when the learning of university students as well as of 
secondary school students was considered).

 3. Signal words that indicated teachers
Signal words such as “teachers” led to an exclusion, unless there were other 

aspects in the title that led to an inclusion (e.g., when not only the teachers’ but 
also secondary school students’ learning was considered).

In case that the information given in the title was not sufficient to conclude on the 
relevance of the article, in a second step, we screened the abstracts for further infor-
mation regarding the orientation of the article and the objects of study. If necessary, 
the methods section was also taken into account.

11.3.4  Data Analysis: Scanning and Coding the Articles

Based on the screening process, 35 empirical articles were included in the next step 
of our review procedure: 18 from SERJ, 9 from ESM, 6 from MTL and 2 from 
JRME.2

To answer the first research question, we scanned these 35 articles for the theo-
retical approaches that were used. First and foremost, we focused on the introduc-
tion and the theoretical parts of the articles. There were articles that did not label 
theoretical sections as such. In these cases, we scanned the paragraphs located 
before the research questions of the articles.

Our theoretical background, presented above (diSessa & Cobb, 2004; Mason & 
Waywood, 1996; McKenney & Reeves, 2012), was used as an overall, open-minded 

2 An overview of the review of the 35 articles can be found at the Handbook’s website in Springer 
Link.
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frame for the scanning and categorization of the theories addressed in the articles 
reviewed. Theories were labelled, whenever they were mentioned in the articles 
with both a statement and a reference. For instance, say that an article dealt with 
Vygotsky’s theory of understanding as dialogical shared building of meanings. To 
be included in the map, the article should not only add a reference to the theory  
e.g.,(Vygotsky, 2001), but also provide an explanation of it. At the end, we dis-
cerned four main categories of theories used in SER that focused on teaching and 
learning of statistics and probability in primary and secondary school. In one of the 
main categories, on theories of statistics, we could discern two subcategories. The 
categories we discerned were:

• Theories of statistics (ToS)

 – Statistical Product Theories (SPdT)
 – Statistical Process Theories (SPcT)

• Theories with a Didactical Focus (TDF)
• Theories in Mathematics/Science Education (TMSE)
• Theories with a Broader Range on Epistemological Aspects (TEA)

This categorization was then used to answer our second research question on the 
extent of different types and combinations of theories used for grounding Statistics 
Education Research.

11.4  Results

11.4.1  The Nature of Theories Used in SER

In response to our first research question, we start by characterizing the different 
categories of theories used in empirical SER articles. After a characterization of the 
categories, we then elaborate on certain phenomena that we found among these 
categories.

11.4.1.1  Theories of Statistics (ToS)

Theories belonging to two categories concerned the nature of statistics and proba-
bility. They can be related to what Mason and Waywood (1996) refer to as fore-
ground theories as they concern the object of study itself and are specific to statistics 
education. These categories were about the notion of statistical knowledge and what 
it means to be knowledgeable in statistics. They comprised theories in relation to 
what students are expected to learn and master regarding the subject. Given the 
inclusion criteria, all articles of our survey presented some subject matter theory 
discussion. From our review of subject matter theories, we distinguished two kinds 
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of foreground theories of statistics: product theories and process theories. In subse-
quent analysis of these theories, we noted that they are underpinned by either the 
structure of statistics or probability itself or by empirical results of student under-
standing or reasoning in relation to the subject matter. We first elaborate the mean-
ing of Statistical Product Theories and Process Theories. We continue the section by 
elaborating on the underpinnings of these two subcategories.

11.4.1.2  Statistical Product Theories (SPdT)

This category contains theoretical approaches (sometimes referred to as models or 
frameworks) that address and conceptualize particular statistical concepts or repre-
sentations. The approaches focus on a single or a limited set of the big ideas of 
statistics and/or probability, such as variability, average, samples, and graphs 
(Shaughnessy, 2007), randomness and independence (Gal, 2005), or the role of 
sample space and comparing probabilities (Nilsson, 2009). Statistical Product 
Theories relate to what is referred to as central statistical content of many curricula 
(e.g., National Council of Teachers of Mathematics, 2000; Swedish National 
Agency for Education, 2012). We use the term “product” to refer to such historically 
developed content, hence the term “product theories”.

11.4.1.3  Statistical Process Theories (SPcT)

This subcategory covers theoretical approaches (models or frameworks) that focus 
on conceptualizing and modelling steps and processes involved in statistical inves-
tigations. The approaches relate to process standards (National Council of Teachers 
of Mathematics, 2000; Swedish National Agency for Education, 2012) and deal 
with statistical knowledge, which emphasizes students becoming engaged in formu-
lating statistical and probabilistic questions, collecting data, analysing data and 
drawing data-based conclusions and inferences (Paparistodemou & Meletiou- 
Mavrotheris, 2008). This subcategory can be compared to what Shaughnessy (2007) 
refers to as models of statistical thinking. We choose to label this category accord-
ing to the processes involved in statistical work, to clearly separate these approaches 
from those that focus on teaching and learning specific to some statistical product.

The categories of statistical products and processes revealed to us that their theo-
retical underpinning took a theoretical disciplinary perspective and/or an empirical 
student perspective (Fig. 11.1).

The disciplinary perspective is based on an analysis of the statistics as such and 
not on empirical data on how students think and reason. This perspective connects 
to the tradition of Stoff-didactics (Steinbring, 2008; Straesser, 2014) and mathemati-
cal and historical phenomenology (Freudenthal, 1983) and is intended to describe 
the mathematical/statistical structure and what it means to be knowledgeable in 
statistics, based on a normative, discipline-oriented perspective. In short, taking a 
disciplinary perspective is about theorizing the learning object (Marton, Runesson, 
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& Tsui, 2004) in relation to what it is that students should understand or be able to 
perform in order to count as being knowledgeable in statistics. Freudenthal’s idea of 
a didactical phenomenology then is to think through what the insights from a math-
ematical and/or historical phenomenology along with empirical educational studies 
imply for the teaching and learning of the subject matter (see Bakker, 2004; Bakker 
& Gravemeijer, 2006, for examples in statistics education).

By a student perspective, we mean that the studies referred to research documen-
tation on how students perceive statistical content and express statistical reasoning. 
In some cases this underpinning was made according to a more or less discreetly 
outlined conglomerate, a synthesis, of empirical findings from previous research. In 
other cases, this underpinning took the form of adopting and using structured cogni-
tive frameworks for guiding research. Konold et al.’s (2015) description of four gen-
eral perspectives that students use in working with data illustrates such a 
framework.

If we compare studies that conceptualize statistical products with studies that 
conceptualize statistical processes, we note that the majority of studies focusing on 
statistical products conceptualize these constructs from a student perspective. The 
focus is on students’ conceptions and, especially, on detecting shortcomings and 
misconceptions but also emergence and development of statistical reasoning. 
Definitions of the statistical concepts in question and what it means to understand 
the concepts are implicit in the studies. In relation to the stage-level structured cog-
nitive frameworks, we observe an implicit mathematical analysis and judgement in 
that higher levels are considered statistically more sophisticated than the lower lev-
els. However, it is not always clear if the levels of the frameworks are guided and 
validated by an explicit account of progression from a statistical (content) 
perspective.

Theoretical 
underpinning

Student 
perspective

Disciplinary 
perspective

Conglomerate 
of previous 

research

Frameworks of 
student 

conceptions or 
strategies

Fig. 11.1 Structure of theoretical underpinning of statistical theories
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The theoretical underpinning of statistical processes is mainly done by describ-
ing processes of statistical work, which is based on the practice developed within 
the discipline (e.g., Wild & Pfannkuch, 1999). We consider the purpose of this 
approach being to describe what kind of abilities and understandings statistics edu-
cation should aim for. Gil and Ben-Zvi (2011) illustrate this perspective in relation 
to informal inferential statistical reasoning:

Informal Inferential Statistical Reasoning (IIR) refers to the cognitive activities involved in 
informally drawing conclusions (generalizations) from data (samples) about a wider uni-
verse (the population), while attending to the strengths and limitations of the sampling and 
the drawn inferences (Ben-Zvi, Gil, & Apel, 2007) and “articulating the uncertainty embed-
ded in an inference” (Makar & Rubin, 2009, p.  85). Rubin, Hammerman, and Konold 
(2006) considered IIR as statistical reasoning that involves consideration of numerous 
dimensions: properties of data aggregates, the idea of signal and noise, various forms of 
variability, ideas about sample size and the sampling procedure, representativeness, con-
trolling for bias and tendency (p. 88).

The disciplinary underpinning is often presented in the form of taxonomies or 
frameworks, for example, Gal’s (2005) probabilistic literacy model and Watson’s 
(1997) three-tier hierarchy, phases of statistical investigations (Pfannkuch & Wild’s, 
2004, PPDAC model) and analytical categories of informal statistical inference 
(Makar & Rubin, 2009).

11.4.1.4  Theories with a Didactical Focus (TDF)

This category comprises theoretical approaches in which didactical aspects are 
taken into consideration as means to support learning (instructional activities, com-
puter tools, teaching). Theories in this sense may concern a specific design principle 
in the field of statistics education, for example, the idea of growing samples (Bakker, 
2004; Ben-Zvi, Aridor, Makar, & Bakker, 2012; Konold & Pollatsek, 2002), or 
approaches related to computer-based learning, inquiry-based learning, problem- 
based teaching or Realistic Mathematics Education (RME).3 According to diSessa 
and Cobb (2004), some of these approaches can be labelled frameworks for action, 
whereas others can be labelled domain-specific instructional theories. They typi-
cally have a prescriptive nature and address the design of learning processes and 
learning environments (see Chap. 16). The question whether they can be considered 
foreground or background theories (Mason & Waywood, 1996) strongly depends 
on the purpose of the investigations.

In this category, we also note theories used to understand language and its influ-
ence in statistics learning, contexts and their influence on students’ understanding 
and their learning process, technology use in the mathematics learning process 
and—in a broader sense—representations and their role in the learning of statistics. 

3 We refer the reader to Chap. 16 of this volume for a discussion of RME.
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Furthermore, topics such as how to teach in relation to gender (Yolcu, 2014) or blind 
children (Vita & Kataoka, 2014) were grounded on this kind of theory.

11.4.1.5  Theories from Mathematics or Science Education (TMSE)

This category contains theories in mathematics (or science) education that are being 
used in SER.  These theories are mainly used as background theories (Mason & 
Waywood, 1996) because they constitute a background for which objects or con-
cepts are being studied in the empirical investigations. Generally, they have a 
descriptive or analytic nature, but, often, they also imply general advice for 
teaching.

Theories in mathematics education are about epistemological questions concern-
ing, for example, learning and understanding mathematics. For instance, Cobb and 
Bauersfeld’s (1995) and Cobb, Yackel, and Wood’s (1992) “translation” of interac-
tionism (Blumer, 1986) into mathematical education constitutes an example of a 
theorization belonging to this category, as they conceptualize interaction from a 
mathematics education perspective.

Basic topics that these theories deal with are ideas about contexts and context use 
in mathematics education, ideas such as (guided) reinvention (Freudenthal, 1973, 
1991), Realistic Mathematics Education (Gravemeijer & Doorman, 1999) or Cobb, 
Yackel, and Wood’s (1989) socio-mathematical norms. What is also referred to are 
theories about language in science (Lemke 1990) or Vygotsky’s (2001) idea about 
everyday and scientific concepts in the context of mathematics and science 
education.

11.4.1.6  Theories with a Broader Range on Epistemological Aspects 
(TEA)

Theories in this category concern learning or cognitive development from a per-
spective that is not restricted to mathematics or statistics education and that has its 
origin in another discipline, such as psychology, sociology or philosophy. To these 
belong, for instance, Vygotsky’s (1978) learning theory, Bourdieu’s (1984) under-
standing of culture, von Glasersfeld’s (1995) constructivism or Biggs and Collis’ 
(1982) SOLO model as a cognitive developmental model.

These theories constitute a broader theoretical background for the investigations. 
Therefore they are used as background theories (Mason & Waywood, 1996) and 
refer to epistemological basic ideas that are fundamental for the orientation of the 
investigations. According to diSessa and Cobb’s (2004) distinction, they can be con-
sidered grand theories, which provide basic assumptions on, for example, learning 
or orienting frameworks, which help to specify issues of learning and implications 
for teaching.
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11.4.2  Types and Combinations of Theories Used 
for Grounding SER

In the following, we outline to what extent the articles in our review referred to dif-
ferent types or combinations of theories. When answering our second research 
question, we differentiated between the five categories of theories characterized in 
the previous section.

Table 11.1 shows how many articles of each journal were integrated in our review 
(e.g., nine articles from ESM) and shows per row how many of these articles referred 
to theories of the above-mentioned categories.

Statistical Product Theories were most often used (74%) in the articles consid-
ered in our review. Examples of these theories are Konold and Pollatsek’s (2002) 
conceptual understanding of signal and noise (used in, e.g., Bakker, 2004), Watson 
& Callingham’s (2003) hierarchical developmental model of understanding of vari-
ation (used, e.g., in Watson, Callingham, & Kelly, 2007), Jones, Langrall, Thornton, 
& Mogill’s, (1997) four-stage cognitive developmental model on elementary school 
students’ probabilistic thinking (based on levels of thinking) or Polaki’s (2002) cog-
nitive developmental model on elementary school students’ learning of 
probability.

Theories with a Broader Range on Epistemological Aspects (TEA) are apparent 
in 29% of the articles. Hence, in 71% of the articles, the studies are not referring to 
or being underpinned by general learning theories.

Related to the topic of networking of theories (Bikner-Ahsbahs & Prediger, 
2014), another perspective in our review was on the question in how far the articles 

Table 11.1 Frequencies and percentages of articles referring to each theoretical approach

# of articles SPdT SPcT TDF TMSE TEA

ESM 9 9 4 4 4 2
JRME 2 2 0 0 0 0
MTL 6 3 5 5 5 2
SERJ 18 12 9 11 7 6
Total 35 (100%) 26 (74%) 18 (51%) 20 (57%) 16 (46%) 10 (29%)

Table 11.2 Frequencies and percentages of how articles use different theoretical approaches

# of 
articles

Group 1
1 type of 
theory

Group 2
2 types of 
theory

Group 3
3 types of 
theory

Group 4
4 types of 
theory

Group 5
5 types of 
theory

ESM 9 1 4 1 3 0
JRME 2 2 0 0 0 0
MTL 6 0 1 2 3 0
SERJ 18 1 10 4 3 0
Total 35 (100%) 4 (11%) 15 (43%) 7 (20%) 9 (26%) 0 (0%)
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used different kinds of theories. The results of this analysis are displayed in 
Table 11.2.

Table 11.2 shows that only 4 out of 35 articles draw on one single theory. Keeping 
to the topic of statistics, these articles concerned Statistical Product Theories (SPdT) 
or Statistical Process Theories (SPcT). For instance, in Rubel’s (2007) article about 
“Middle school and high school students’ probabilistic reasoning on coin tasks”, all 
theoretical approaches were marked as Statistical Product Theories, as they dealt 
with students’ conception of key concepts of probability such as sample space, 
independent event and probability comparison.

The largest group of articles (43%) used two different types of theories. Within 
this group, the most common combination (4 out of 14) was a Statistical Process 
Theory (SPcT) with a didactical theory (TDF), such as teaching issues in relation to 
gender (Yolcu, 2014), blind students (Vita & Kataoka, 2014) and technological 
tools (Watson, 2008; Paparistodemou & Meletiou-Mavrotheris, 2008). However, in 
these cases, the didactical dimension was not explicitly grounded in a broader, gen-
eral framework. Statistical Process Theories/frameworks constitute the core of the 
theoretical framing. What also occurred was a combination of a Statistical Product 
Theory (SPdT) and a Statistical Process Theory (SPcT) as well as a combination of 
a Statistical Product Theory (SPdT) and a Theory with a Broader Range on 
Epistemological Aspects (TEA) (each 3 out of 14). In the latter case, Statistical 
Product Theory was framed by a more general theoretical framework. For example, 
in Reading (2004), Biggs and Collis’ (1982) SOLO model was used in order to 
frame Mooney’s (2002) Statistical Thinking Framework, which is based on the 
SOLO model. Other combinations of different kinds of theories did not occur more 
often than two times.

Whereas 20% of the articles referred to three different kinds of theories, in 26% 
of the cases, four different types of theories were used. These included the types 
Theories in Mathematics and Science Education (TMSE) and Theories with a 
Broader Range on Epistemological Aspects (TEA). Finally, there were no articles in 
this review that combined theories of all five types.

11.5  Recommendations for the Future of Theory 
Development in SER

Our review revealed that SER has begun to mature as a scientific discipline in terms 
of using domain-specific theories in grounding and guiding research. Focusing on 
domain-specific theories of statistics is of course important and necessary; it is what 
gives SER its identity. However, we suggest that SER could benefit from extending 
and strengthening its use of background theories and orienting frameworks. The 
book edited by Koschmann (2011) shows how scholars from different disciplines 
theoretically reflected on an example at the boundary of science and statistics edu-
cation. Many crucial epistemological issues and phenomena in SER are often 
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treated implicitly or neglected. We therefore encourage statistics educators and 
researchers to be explicit about their background theories and orienting 
frameworks.

We continue with a list of epistemological issues that we consider in need of 
further theoretical elaboration. The list entails topics of study that we think need a 
stronger theoretical basis or treatment. We summarize our recommendations as fol-
lows and elaborate on them in the remainder of this section:

 1. More explicit attention needs to be paid to how students can learn historically 
developed disciplinary, formal knowledge. More explicit attention on theorizing 
the relationship between formal and personal views of statistics will help to 
move the field forward (beyond statistics education) (Makar, 2014).

 2. In addition to static categorizations of student thinking, we need insights into the 
dynamics between categories or levels. In the case of valid types of reasoning: 
How can combinations or even integration be promoted? In the case of levels: 
How can transitions to higher levels be promoted?

 3. There is a need for more fundamental theories on the impact of digital technol-
ogy on learning statistics but also on how to teach with digital technology. 
Reflection on how the nature of statistical knowledge itself changes due to such 
technology will also be necessary (see, e.g., Biehler, Ben-Zvi, Bakker, & Makar, 
2013; Gould, 2010).

 4. There is a need for a deeper theoretical conceptualization of context and contex-
tualizing in statistics education (see, e.g., Bakker & Derry, 2011; Gil & Ben-Zvi, 
2011; Makar & Ben-Zvi, 2011).

 5. Consider potential benefits of a semantic theory that has been proposed as under-
pinning research on statistical inference: inferentialism. We do not want to sug-
gest this is the only or best way forward, but it is in our view an interesting 
candidate to shed a new light on long-standing issues (e.g., Bakker, Ben-Zvi, & 
Makar, 2017).

11.5.1  The Relationship Between Formal and Personal Views 
of Statistics

We examined how statistical knowledge has been approached from the disciplinary 
perspective of statistics and/or from the empirical perspective of students. In devel-
oping statistics education, both approaches are important and reflexively dependent. 
On the one hand, the statistical perspective defines the nature of the discipline and 
provides guidance for formulating standards and teaching goals. On the other hand, 
empirical research of students’ understandings and dealings with statistics becomes 
essential in a pedagogy that emphasizes that teaching builds students’ learning tra-
jectories or progressions to the goals of the standards from where the students are 
(see also Chap. 9, this volume). The idea of building teaching from where the stu-
dents are, and attempting to align students’ conceptions with the target of teaching, 
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is implicit in many of the studies of our mapping that focused on characterizing 
students’ conceptions or prior knowledge (e.g., Dierdorp, Bakker, Eijkelhof, & van 
Maanen, 2011; Lee, Angotti, & Tarr, 2010; Watson, 2009).

Designing instruction that builds on students’ understandings (Jones, Langrall, 
& Mooney, 2007; Konold, Harradine, & Kazak, 2007) and aligning students’ con-
ceptions with the target of teaching come with a “pedagogic challenge” (Pratt, 2005, 
p. 175) (see also Chap. 16 in this volume). Much evidence testifies that students’ 
prior understanding often impacts (Sharma, 2014) and stands in conflict with the 
formal way of understanding key concepts of probability and statistics (Fischbein & 
Schnarch, 1997; Kahneman, Slovic, & Tversky, 1982). What is the meaning, or pos-
sibility, to build on personal ideas when they are at odds with the learning goals? 
How is it possible to align opposing understandings? It is in relation to such ques-
tions we claim that the pedagogic challenge Pratt (2005) points to should be consid-
ered. It is in relation to such question that the relationship between formal and 
personal meanings of statistics has not yet had the theoretical treatment it needs.

In a similar vein, if we are to develop frameworks for action (diSessa & Cobb, 
2004) and hypothetical learning trajectories (Simon, 1995), which are based on con-
necting formal and personal meanings, there is a need of a theoretical treatment that 
makes it possible to understand, explain and predict processes involved in this rela-
tionship. Where some authors emphasize the continuity of such development 
(Abrahamson, 2012), others consider its discontinuity (Yerushalmy & Chazan, 
2008). We speculate that constructivists prefer to stress continuity (because students 
have to construct new knowledge on the basis of old knowledge) and that sociocul-
tural theorists can more easily live with discontinuities (because there are multiple 
distinct practices in which students learn to participate). What these views seem to 
share are explanations in one direction: from student to discipline (students con-
structing disciplinary knowledge) or from discipline to student (internalizing socio-
cultural practices). An alternative approach, expressed by Rosen, Palatnik and 
Abrahamson (2016), is to work from a middle ground in both directions. In this 
respect, there seems to be a renewed need to reconcile the acquisition and participa-
tion metaphors of learning (Sfard, 1998; Taylor, Noorloos, & Bakker, in press).

11.5.2  Static Versus Dynamic Aspects of Frameworks 
About Processes

The cognitive frameworks used in research on students’ understanding of statistical 
products often specify levels in students’ understandings. They are at times descrip-
tive in nature as they provide an overview of different ways of understanding key 
concepts in statistics and probability. Cognitive frameworks have commonly been 
used for prescriptive purposes: They have proven useful for teachers to design, 
implement and assess learning environments in statistics and probability (Jones 
et al., 2007). Of course, we find such results promising. However, according to the 
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discussion in the preceding paragraph, the articles involved in our mapping provide 
little explanatory power of understanding processes involved in moving from one 
level in the framework to another level, neither do they give explanations for why 
students may respond according to one level in one situation and on another level in 
another situation. From a design-research perspective (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003), a cognitive framework may provide input for formulat-
ing a hypothetical learning trajectory (cf., Bakker, 2004). But such frameworks pro-
vide limited guidance for the means to support such a learning trajectory and how 
the levels of the students’ responses depend on affordances provided by the learning 
environment such as interaction with teachers, other students and mediating tools 
(Ryve, Larsson, & Nilsson, 2013; Sfard, 2008). Hence, a way to strengthen the 
power of a cognitive framework could be to underpin it by an explicit background 
theory that orients researchers to conceptualize transitions between levels and the 
means of supporting such transitions.

Apart from Watson and Callingham’s (2003) framework, we do not know of 
frameworks of statistical processes that really highlight issues of learning in terms 
of progression within or between the different categories of the framework. 
Frameworks are typically described in general terms according to practice devel-
oped in the statistical discipline without attention to how categories can be com-
bined or higher levels can be reached. Defining clear boundaries around categories 
has been argued to be an important endeavour in scientific research (Bowker & Star, 
2000), but in educational research, we also need insight into how to cross 
boundaries.

For instance, several of the articles in our review (e.g., Ben-Zvi, 2004; Lee et al., 
2010; Watson et al., 2007; Watson & Kelly, 2004) refer to Wild and Pfannkuch’s 
(1999) framework of statistical thinking (SPcT). Several key components of statisti-
cal investigations are highlighted in this framework, for example, (1) the ability to 
formulate a statistical researchable question, (2) modelling and (3) contextual 
awareness. However, in the articles of the review, components like these three were 
dealt with only in general (or implicit) terms. Readers were provided with little 
information of how to understand qualitative differences in how students expressed 
aspects of the components.

Say that a group of students are interested in whether there is a “real” difference 
in expected values between girls and boys in scoring goals in penalty kicks in soc-
cer. The class comes up with a number of different formulations of the exact statisti-
cal question to investigate. The question we ask is how can research provide tools 
for the teacher to conceptualize and distinguish progression of statistical sophistica-
tion in the students’ questions? We also ask by which means the teacher should act 
in order to develop students’ ability to formulate statistical research questions of a 
certain quality. Say that one student limits the research question to examine only 
right-footed players while another student includes both right-footed and left-footed 
players. Related to data collection, one student may say that they need to take into 
consideration if the penalty is made during practice or during match. As we can see, 
the situation quickly becomes very complex. We wonder whether it is possible to 
develop principles that teachers can use as a guide to conceptualize qualities and 
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progression within and between the different components of a statistical investiga-
tions and, subsequently, principles for how progression of students’ understanding 
of statistical processes can be conceptualized and supported.

To deal with such learning issues, we think that the frameworks of statistical 
processes need to be further grounded in theories of learning. In the same spirit, it 
would be interesting to see how learning, according to a framework describing sta-
tistical processes, such as Makar and Rubin’s (2009) framework of informal infer-
ential reasoning, can be conceptualized in different ways by adapting the framework 
to different background theories of learning, such as constructivism, sociocultural 
perspective, symbolic interactionism and distributed cognition (cf., Cobb, 2007).

11.5.3  Theories About Technology Use

Within the category of didactical theories (TDF), there was an emphasis on technol-
ogy (e.g., Prodromou & Pratt, 2006; dos Santos Ferreira, Yumi Kataoka, & Karreer, 
2014; Lee et al., 2010). However, in the reviewed articles, there was no deeper theo-
rization of computer-assisted instruction in statistics. We did not find what diSessa 
and Cobb (2004) would describe as frameworks for action or domain-specific learn-
ing theories. The research motivates and conceptualizes new technology mainly on 
empirical results, emerging from individual case studies. It is hard to note any accu-
mulated results or consensus, except for an overall argumentation of the possibility 
to provide visualizations, simulations and different forms of representations by new 
technology. In the 35 articles, we found no theoretical attempts on a more specific 
level with the intention to provide prescriptive information for supporting statistics 
learning with technology, such as guiding principles for designing tasks and 
sequencing tasks in a digital learning environment or frameworks for explaining and 
understanding the relationship between digital and analogue learning environments. 
Watson (2008) comes close in her discussion of boxplots in TinkerPlots. Of course, 
outside the review sample, there are more studies on this topic (e.g., Ben-Zvi, 2000; 
Biehler et al., 2013; Konold & Kazak, 2008).

Theories from mathematics education such as about instrumental genesis 
(Drijvers & Trouche, 2008) could also be useful to think more fundamentally how 
technology may affect learning. But there is more: Technology changes the disci-
pline of statistics itself and to the need to rethink learning goals of statistics educa-
tion (Gould, 2010).

11.5.4  Context and Contextualization

Like most disciplines, statistics is traditionally seen as theoretical, something gen-
eral applied in practical contexts. In line with this idea, Wild and Pfannkuch (1999, 
p.  28) talked about the importance of “shuttling between the contextual and 
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statistical spheres.” A special issue in MTL in 2011 (Makar & Ben-Zvi, 2011) indi-
cated that the SER community has considered this topic of the relation between 
statistics and context significant.

Articles that addressed issues of context were not restricted to just one category 
in the review. Context was addressed according to TEA (e.g., Halldén’s (1999) the-
ory of contextualization), TMSE (e.g, context connected to the idea of guided rein-
vention (Dierdorp et  al., 2011)) and TDF (e.g., context as a means of support 
(Pfannkuch, 2011)).

The attention to context and contextualizing in SER reflects an increased aware-
ness of the situated and social nature of learning and teaching in general (Kirshner 
& Whitson, 1997) and in mathematics in particular (Lerman, 2000). However, tak-
ing a closer look into our review, we see that situated, interactive and contextual 
issues of learning and teaching of statistics are often dealt with implicit and infor-
mal ways. Of the 35 articles, only 8 explicitly theorized the meaning and role of 
context and contextualization in the learning of statistics; of these eight, four were 
in the special issue “the Role of Context in Developing Reasoning about Informal 
Statistical Inference” in MTL 2011 (Makar & Ben-Zvi, 2011). So, if we assume that 
contextual issues are essential to take into account in understanding learning and 
teaching of statistics, our review points to the need for stronger theoretical ground-
ing. An increased theoretical basis and clarity will not only enable researchers to 
build on one another’s work in a reliable way, but it will also increase the implemen-
tation fidelity of research outcomes into a classroom practice (Lester, 2010; Silver 
& Herbst, 2007).

11.5.5  Inferentialism in Statistics Education

A last point concerns a theory that increasingly is attracting attention in statistics 
education (and many other disciplines): inferentialism. Inferentialism is a semantic 
theory, formulated by a philosopher (Brandom, 2000), which puts inference at the 
core of human knowing and thus fits well with the idea of statistical inference at the 
heart of statistical knowing. More generally, Brandom privileges inference over rep-
resentation. This means that in his view, the ability to represent anything rests on 
practices of human reasoning. The opposite route of explanation has been more 
common in the history of philosophy and education: Once we can represent we can 
reason. This is a representationalist view, which has been criticized by many phi-
losophers (Rorty, 1979) and educational researchers (Cobb, Yackel, & Wood, 1992). 
Bakker and Derry (2011) argued that there is also a risk in statistics education to 
adopt, without being aware of it, a representationalist view, which is to assume that 
once students know the key representations of statistics, they can reason statisti-
cally. What we often see in statistics curricula as a consequence is an atomistic 
approach: mean, median, mode, range and standard deviation are dealt with one by 
one. And the idea of distribution is only introduced once concepts and representa-
tions such as mean, standard deviation and Cartesian graphs are covered.
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Aiming to counterbalance such pitfalls and tendencies, Bakker and Derry (2011) 
draw three lessons from inferentialism for statistics education. First, statistical con-
cepts should in their view be primarily understood in inferential terms, that is, in 
their role in reasoning. Trying to move carefully from descriptive to prescriptive 
ideas, they explicitly take the step from philosophy to education: If, from a philo-
sophical point of view, the inferential role of concepts should be privileged over 
their representational function, then educators may also need to emphasize the 
importance of concepts in use. This is the first lesson drawn from inferentialism. 
The second lesson is that a holistic approach should be prioritized over an atomistic 
one. Given that concepts only have meaning in relation to other concepts, statistical 
concepts should be learned in packages—in relation to each other. For example, 
mean and standard deviations have more meaning in relation to distribution than in 
isolation. This implies that informal attention to distribution may be needed well 
before any formal definition can be given (Bakker, 2004). As a third lesson, Bakker 
and Derry (2011) illustrate what privileging an inferentialist approach to teaching 
statistics may look like in contrast to a representationalist approach. In this way, 
they try to link a theoretical background theory on epistemology to didactical ideas 
about informal inferential reasoning. As their study testified, such theoretical work 
is far from trivial but, in our view, necessary.

In our view, inferentialism has the potential to address the previous needs from a 
fresh perspective. Firstly, it offers a perspicuous view on the relation between the 
individual and social (Schacht & Hußmann, 2015) that underlies the pedagogic 
challenge formulated in the first need. Secondly, by understanding concepts, catego-
ries and representations in terms of inference and reasoning, the inferentialist lan-
guage and ways of thinking may well offer the dynamic and holistic view that can 
help to avoid static usage of frameworks with categories or levels. Thirdly, the issue 
of technology forces scholars to think about the distributed cognition (Hutchins, 
1995) among humans and machines. Although Brandom’s primary interest is human 
reasoning, the focus on inferences can still offer a fresh perspective on what stu-
dents need to learn. When using technology, particular inferences are outsourced in 
computational form to technology, but humans still have to decide which technol-
ogy to use and how to interpret the outcomes (Hoyles, Noss, Kent, & Bakker, 2010). 
This can be challenging because of the black box nature of much digital technology. 
In the travelling metaphor used by Biehler et al. (2013), doing statistics by hand is 
like walking—step by step with attention to many details. Doing statistics with 
technology allows us to travel fast and far, with the obvious advantage of being able 
to infer things that are impossible with pen and article but with the drawback of not 
having sight on the route taken.

Lastly, inferentialism has also been used to zoom in and conceptualize contex-
tual issues in learning mathematics and other disciplinary knowledge. Heusdens, 
Bakker, Baartman and De Bruijn (2015) have proposed to use the term contextual-
izing both for bringing ideas and actions into a theoretical context (creating concep-
tual coherence by means of conceptualizing) and for bringing them into practical 
context (concretizing as relating general ideas to specific situations or actions). For 
statistics, this implies that one should not see statistics as decontextualized 
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 knowledge but as a discipline that brings statistical ideas and techniques into a con-
ceptual context but also relates them to concrete situations. As Heusdens et  al. 
(2015) illustrate with culinary examples, these processes of conceptualizing and 
concretizing can occur simultaneously, which suggests a way out of the aforemen-
tioned dichotomy. They use inferentialism, in particular the idea of webs of reasons, 
to highlight the similarity between conceptualizing and concretizing: In any con-
crete situation, multiple reasons are at stake. Some may be theoretical and some 
practical. Some may be statistical and others pragmatic. Although there is still a 
long way to better understand the complexity of the interplay between various types 
of reasons, we think that inferentialism offers a helpful theoretical lens that can 
illuminate how students can learn to contextualize and integrate statistical and con-
textual considerations.

11.6  Conclusions

The goal of the review presented here was to categorize types of theories used in 
Statistics Education Research (SER). The review addressed the following research 
questions:

 1. What is the nature of theories used in Statistics Education Research?
 2. To what extent are different types and combinations of theories used in Statistics 

Education Research?

In response to our first research question, we distinguished four different main 
categories: Theories of Statistics in Statistics Education Research, where some 
could be characterized as being focused on products (SPdT) and others as process 
oriented (SPcT). Some theories focused on statistics itself and others on student 
learning of particular statistical content. Theories with a Didactical Focus (TDF) 
were predominantly foreground theories on instructional activities, technology or 
language. Theories in Mathematics or Science Education (TMSE) contained back-
ground theories, for example, on Realistic Mathematics Education, socio-mathe-
matical norms or everyday versus scientific concepts. And finally, Theories with a 
Broader Range on Epistemological Aspects (TEA) stemmed from, for example, 
Vygotsky (1978), Bourdieu (1984), von Glasersfeld (1995) and Biggs and Collis 
(SOLO) (1982).

In response to our second research question, we concluded that many authors of 
the articles in our study used several types of theories. We do not mean to demean 
careful usage and development of a single theory or to imply that including more 
theories is always a better approach. Yet we find drawing on multiple theories prom-
ising because, in our experience, different theoretical resources are typically needed 
to study complex issues in depth (cf. diSessa & Cobb, 2004).

Last, we moved from a descriptive review perspective to a more critical stance. 
We recommended five themes that in our view need further thought and theoretical 
treatment by statistics education researchers.
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As indicated, this review study has its limitations. We hope others feel invited by 
this modest review of how theories have been used in recent empirical SER articles 
to deal with the topic more extensively. For example, a larger set of publications, 
including theoretical ones, may help to identify particular trends. Furthermore, 
reading of the full articles will help to judge how well theories are put to work. 
Within mathematics education, theory has been the topic of many publications 
including books (Bikner-Ahsbahs & Prediger, 2014; Sriraman & English, 2010). 
However, in SER such publications are practically absent. Promising approaches 
may be to use one study in statistics education as the source of reflection from dif-
ferent theoretical perspectives (cf. Bikner-Ahsbahs & Prediger, 2014; Koschmann, 
2011).
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Chapter 12   
Reimagining Curriculum Approaches             

Maxine Pfannkuch

Abstract As new societal learning goals are formulated and people and technology 
shape, grow, and challenge statistical practice and thinking, educators respond 
through researching, imagining, and implementing new curriculum approaches. In 
our reimagining of curriculum approaches, we have chosen to discuss learning 
experiences that all students could engage in as part of their enculturation into 
thinking from a statistical perspective. These learning experiences are immersion 
into data-rich environments, probability modeling, an emphasis on using visualiza-
tions for conceptual development, a focus on evaluating data-based arguments, and 
fostering statistical reasoning. We also argue that these curriculum approaches can-
not be embedded and implemented without attention to professional development 
of teachers and assessment practices. New research orientations emanating from 
these possible changes are identified.

Keywords Essential statistical learning experiences • Data-rich environments  
• Probability modeling • Visualizations • Designing investigations • Evaluating sta-
tistical arguments • Fostering statistical argumentation

12.1  Imagining Statistics Curricula in the Twenty-First 
Century

Continuing rapid transformations and innovations in our society lead us to con-
stantly evaluate and reimagine curricular approaches in statistics. Big data are on 
the horizon, interactive nontraditional statistical graphs are proliferating, and deal-
ing with risk information in everyday life is becoming more prevalent, yet none of 
these statistical activities are common in current curricula. Nor do we know how 
curricula might incorporate them into teaching and learning programs. What we do 
know is that statistics curricula constantly change. Because statistics is a living, 

M. Pfannkuch (*) 
Department of Statistics, The University of Auckland, Auckland, New Zealand
e-mail: m.pfannkuch@auckland.ac.nz

mailto:m.pfannkuch@auckland.ac.nz


388

evolving field, change in curricula may reflect an update to contemporary statistical 
methods, or change can be in response to research findings that change our perspec-
tive on how students learn statistics or to lobbying by particular groups. Technological 
changes allow different learning goals to be sought, different statistical methods to 
be taught, and different pedagogies to be used. The drivers of innovation and change 
can be at a global level where technology is revolutionizing the way people interact 
with the world or can be one person whose message resonates with a wider group 
who enact and implement the vision enunciated. Other drivers of change are new 
societal perspectives such as requiring evidence-based argumentation. All of these 
changes challenge us to rethink essential statistics curriculum learning experiences. 
Whether the changes are viewed as progressive or retrogressive, curricula are 
shaped, challenged, and buffeted by people and the learning tools available to them.

Prior to the 1990s, statistics was commonly a small part of school mathematics 
curricula and was mainly limited to descriptive statistics such as computing the mean 
and constructing graphs (see more in Chap. 2, this Volume). In the 1990s statistics 
education research and curricula started to flourish partly in response to publications 
from august bodies (e.g., National Council of Teachers of Mathematics, American 
Statistical Association, International Association for Statistical Education), govern-
mental awareness that their citizens needed to be data literate (e.g., Ministério da 
Educação, 2006), and exhortations from renowned statisticians to reform statistics 
curricula (e.g., Cobb, 2007; Moore, 1990). In the 2000s statistics became an impor-
tant part of curricula in many countries including Brazil (Ministério da Educação, 
2006), the USA (Advanced Placement Statistics (College Board, 2010); Common 
Core State Standards Initiative, 2010; Guidelines for Assessment and Instruction in 
Statistics Education (GAISE), 2007), Germany (Kultusministerkonferenz, 2004a, 
2004b, 2012), and New Zealand (Ministry of Education, 2007). These initiatives 
have started to reform statistics curricula from descriptive statistics to the active 
exploration of data and probability modeling and to invoke a new paradigm of using 
a statistical approach rather than a mathematical approach to statistics and 
probability.

These reforms along with research, which was uncovering how students were 
reasoning from data, opened the doors to consider that statistics had its own unique 
ways of thinking (Wild & Pfannkuch, 1999) and consequently required a different 
approach to teaching than mathematics. Hence, characterizing statistics as an intel-
lectual discipline in its own right with its own ways of thinking and arguing (Moore, 
1990) led to imagining new paradigms and the challenging of curricular developers 
to travel down untrodden paths (Cobb, 2007).

This chapter is focused on reimagining curriculum approaches in statistics and 
other disciplines including the highlighting of gaps in the research knowledge base. 
In Sect. 12.2 we discuss how we define the term curriculum, together with the major 
premises underpinning our thoughts when reimagining curriculum approaches. In 
Sect. 12.3 we discuss the types of learning experiences that may be operationalized 
in future curricula, while in Sect. 12.4 attention is given to fostering statistical rea-
soning. Section 12.5 highlights the cascade of subsequent changes that may be 
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 activated when curricula change. The chapter ends with a reflection on the possible 
impacts on statistics curricula and statistics education research in the future.

12.2  Defining Our Approach to Curriculum

Multiple meanings for the term curriculum have developed as research on teaching 
and the curriculum have proliferated. Curriculum can refer to the national curricu-
lum document, curriculum materials designed for use by teachers or the curriculum 
enacted in the classroom. The teacher is pivotal in transforming curriculum tasks or 
what needs to be learned into how it is learned. Teachers’ beliefs about the nature of 
statistics, their goals for student learning, the learning environment they establish, 
and their own statistical knowledge influence what and how students learn (Stein, 
Remillard, & Smith, 2007). In this chapter we focus on what and how students may 
learn in imagined future curricula, while Chaps. 10 and 16 discuss factors influenc-
ing the learning of statistics.

When reimagining the statistics curriculum, we considered many questions to 
determine what might be important to prepare students for their most likely futures. 
For example: What learning experiences will prepare students to deal with complex-
ity and ambiguity, to be statistically literate citizens, and to challenge statistically 
based arguments? What thinking, concepts, and patterns of reasoning are essential 
to provide cognitive infrastructure that will endure despite rapidly changing techno-
logical tools?

Our vision for future curricula is one that aspires to be broad in concept and 
constantly changing in acknowledgment that statistics education must reflect the 
constant evolution of statistical knowledge and practice and societal goals. Our 
chapter is based on the following three premises for future curricula:

12.2.1  Promote Essential Statistical Experiences

In an active learning and experiential learning environment, our premise is that 
future statistics education curricula may attend to the following three features: the 
whole statistical inquiry cycle from problem to conclusion (Wild & Pfannkuch, 
1999), building and exploring probability models (Konold & Kazak, 2008), and 
critically evaluating data-based arguments from diverse media (Gal, 2002; 
Gigerenzer, 2014). Within these three learning experiences, we suggest that curricu-
lar developers will be identifying basic knowledge and conceptual building blocks 
of statistics that they perceive will endure as technology changes (e.g., variation, 
distribution, randomness, number sense, and graph comprehension) including the 
development of the language of statistics. Moreover, we envisage curricular devel-
opers will pay attention to curriculum coherence in terms of concept development 
and sequencing of topics “which aim for coherence from a student perspective” 
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(Bakker & Derry, 2011, p. 6). The emphasis on coherent researched curricula path-
ways to scaffold students’ learning from novice to expert is an area that may take 
primacy in future curricular development.

12.2.2  Foster Statistical Reasoning

Fostering statistical reasoning includes understanding and researching the context 
of data (Cobb & Moore, 1997), interrogating the data (Wild & Pfannkuch, 1999), 
and using the data as evidence for making and supporting claims for both inquiry 
and advocacy (Gal, 2002). Thinking, reasoning, and arguing from and with data, 
however, have implications for paying attention to general literacy, for verbalizing 
and writing cogent arguments, and on learning how to argue in the statistics arena 
(e.g., Fielding-Wells & Makar, 2015). Furthermore, the proliferation of data-based 
evidence throughout every discipline suggests that teachers in all disciplines might 
need to be fully accomplished in teaching students how to argue with data in their 
discipline (Usiskin, 2014).

12.2.3  Assume Technology is an Integral Part of Statistics 
Curricula (Cf. Bates & Usiskin, 2016)

Technology has the power to give students access to previously inaccessible con-
cepts and ideas, to explore statistics and probability ideas, and to promote a deeper 
level of understanding of statistics (e.g., Shaughnessy, 2007). Through using tech-
nology students begin to think in new ways (e.g., visually), restructure their thought 
processes, and cognitively stimulate new conceptual infrastructure (e.g., Garfield, 
delMas, & Zieffler, 2012; Konold & Higgins, 2003). Because technology is con-
stantly evolving, statistical ideas cannot be dependent on specific technology. The 
enduring ideas of statistical knowledge, thinking, reasoning, and arguing need to be 
transferred as technology changes as well as conceptualized, identified, and devel-
oped in students.

Our premises with regard to reimagining curriculum approaches we believe are 
essential, if statistics learning is to progress and to be in concert with current statisti-
cal practice and thinking and with the needs of a society that is becoming more 
dependent on data-based evidence and learning from data.
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12.3  Essential Learning Experiences

Statistics curricula expectations have gradually changed over the last 30 years to 
emphasize not only the content knowledge to be learned but also the involvement of 
students in the experience of doing statistics through investigations and the impor-
tance of developing their statistical thinking (e.g., GAISE, 2007). We envisage all 
three aspects will continue to be the foundations on which curricula will be built. 
What may change is our current conception of what statistics is (see Chaps. 1 and 
4). In this section, however, we discuss how essential learning experiences can be 
promoted through the provision of data-rich environments for inquiry, probability 
modeling, emphasis on using visualizations for enduring conceptual development, 
and attention to designing investigations. For statistical literacy we discuss the need 
to promote students’ abilities in evaluating data-based arguments.

12.3.1  Data-Rich Environments

With the advent of statistics software designed specifically for learning (e.g., Fathom 
(Finzer, 2005), TinkerPlots (Konold & Miller, 2011), and iNZight (Wild, 2012)) and 
the American Statistical Association promoting “more data and concepts, less the-
ory and fewer recipes” (Franklin & Garfield, 2006), data-rich learning environments 
are flourishing at all curricular levels. These technologies have stimulated a rich 
repository of research (e.g., CATALST, 2012; Connections Project, 2007) on stu-
dents’ statistical thinking and reasoning processes when engaging in investigations 
(see Chaps. 5 and 8). Data-rich environments involve students’ engagement with 
understanding the context of situations and the questions that need to be and can be 
answered with data, determining and debating the measures and design used or to 
be used, analyzing and interrogating multivariate data sets, unlocking stories in the 
data, and communicating and evaluating findings. Data is authentic, allowing stu-
dents to experience the uncertainties associated with finding patterns and relation-
ships. Powerful visualizations are also beginning to play an important role in 
revealing stories in the data and supporting data-based arguments (see Rosling, 
2010). Furthermore, statistical investigations and exploratory data analysis are at 
the heart of some school and tertiary curricula. Therefore, in reimagining curricu-
lum approaches, we envisage that engaging with authentic data will become a cor-
nerstone of curricula with possible steps into big data at school level but definitely 
at the tertiary level (see Chaps. 13 and 15).
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12.3.2  Probability Modeling

Teaching probability lags behind teaching statistics, and worldwide there is general 
consternation among educators that school curricula are de-emphasizing probability 
and the development of probabilistic thinking (e.g., Mooney, Langrall, & Hertel, 
2014). Although probability is difficult to teach and many misconceptions among 
students and adults have been identified (e.g., Saldanha & Liu, 2014; Shaughnessy, 
2003), we live in a world permeated by chance phenomena and risk that increas-
ingly demands that students understand chance arguments. As Pratt (2011, p. 891–
892) stated:

The statistics curriculum is responding to approaches offered by EDA [exploratory data 
analysis], new technology, and an understanding of IIR [informal inferential reasoning]. Yet 
the probability curriculum is not changing. As a result, while the teaching and learning of 
statistics takes on an enquiry-based problem-solving stance, where students act as data 
detectives, the pedagogy of probability is ever more isolated in its strange world of coins, 
spinners and dice as tools for demonstrating in a rough and ready way the existence of theo-
retical probability.

We contend that the teaching of probability in many countries reflects this senti-
ment. Many education researchers (e.g., Fielding-Wells & Makar, 2015; Prodromou, 
2014) agree with Pratt (2011, p. 897) that probability conceptions should “develop 
around the notion of probability as a modeling tool that could be used to build mod-
els in computer-based simulations akin to video-games that engage children and 
adolescents of today.” This does not mean that coin, dice, and spinner scenarios, 
which underpin probability, will be lost, rather students can build models of these 
scenarios using technology such as the innovative software TinkerPlots (English & 
Watson, 2016). Through this technology students can also experience and model 
real-world scenarios (Konold & Kazak, 2008).

To improve and to study students’ probabilistic conceptions, researchers have 
developed a number of software tools (e.g., Probability Explorer (Lee & Lee, 2009), 
Basketball Simulation (Prodromou, 2014)) that allow students to explore the behav-
ior of pre-built probability models. Students typically explore the consequences of 
actions and conditions such as varying input parameters and observing the resultant 
outputs. They give students opportunities to test hypotheses, pose “what if” ques-
tions, and reason about relationships between the changes and the outcomes. These 
types of tools appear to be successful in enhancing students’ probabilistic notions 
and conceptual development. More development and research would be invaluable 
at all curricular levels in this area including how successful small-scale research 
projects can be replicated on a much larger scale (Biehler, Ben-Zvi, Bakker, & 
Makar, 2013). It is urgent that better ways are found to develop students’ probabi-
listic thinking and to develop a probability curriculum that is more inquiry-based.

We believe, however, that Tinkerplots, which allows students to construct models 
and then explore the behavior of the models they have built, provides a good exam-
ple for future software development. A body of research on students’ ability to con-
struct models using TinkerPlots and the consequent development of their 
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probabilistic reasoning is being built up (see Chap. 7). Unlike simulations where 
variables are prescribed, constructing models involves students in the development 
of measures and attributes and sequencing events to describe and answer questions 
about a system. Capturing relevant elements in a model that mimics the random 
behavior of a system is an essential probability modeling experience. Hence in our 
reimagined curriculum approaches, the affordances offered by Tinkerplots type 
software will be an integral part of the probability curriculum, a curriculum that no 
longer separates probability and statistics but one that strongly connects the two 
together. The future approach to probability is predicted to be through modeling 
(Chaput, Girard, & Henry, 2011; Eichler & Vogel, 2014; Jones, 2005), an approach 
to probability that is more aligned with the practice of today’s applied probabilists 
(Pfannkuch & Ziedins, 2014). Thus, we recommend that probability modeling be 
considered an important component of new curricula and an area to be addressed in 
research.

12.3.3  Visualizations for Conceptual Development

With the proliferation of research into students’ reasoning, it is now possible to 
design curricula that are based on how reasoning develops in students rather than 
being based on beliefs about how novices develop understanding about expert prac-
tice (Garfield, Le, Zieffler, & Ben-Zvi, 2015; Konold, 2002). New developments in 
technology have resulted in the ability to use simulations and dynamic visualiza-
tions to target and reveal concepts that were previously inaccessible to students. In 
our reimagined curriculum approaches, the focus will be on development of key 
concepts including a mapping of the progression of conceptual development across 
year levels. Some work has started on conceptual development for some aspects of 
statistics and probability, but much more research is needed on identifying and con-
structing conceptual pathways (see Chap. 16). We now describe some recent devel-
opments in order to illustrate how research can inform curriculum design and the 
potential power of visualizations, hands-on or computer-based, in enabling better 
conceptual development.

Bakker, Biehler, and Konold (2005) questioned curricula that introduced middle 
school students to box plots. Their analysis of the requirements for interpreting box 
plots highlighted that students’ thinking needed to be transitioned from their prior 
experience of individual cases to the aggregate (Konold, Higgins, Russell, & Khalil, 
2015) and from frequency displays to density displays. Furthermore, students 
viewed the box plot median as a cut point rather than a distribution property, and 
their sense of the quartile divisions did not lead to notions of measures of spread. 
When comparing box plots, the students tended to compare the five summary num-
bers, and when all were higher, they “would conclude that one group had ‘larger 
values’ than the other [but] when these differences were not all in the same direc-
tion, they did not know what to conclude” (p. 170), a finding that contributed to the 
idea of informal inference (see Chap. 8). Bakker et al. (2005) concluded that box 
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plots should not be in the curriculum until at least secondary school and when intro-
duced sufficient instructional time should be allocated. They also believed the pro-
cedures of how to find the five-number summary and constructing the box plot were 
counterproductive to conceptual understanding.

The visual tools in TinkerPlots seem to provide a possible conceptual pathway 
from dot plots to box plots. Allmond and Makar (2014) describe how 12-year-olds 
in a problem context started with the intuitive visual tools of TinkerPlots to divide 
the dot plots of the data into three parts, moved to visual hat plots (a precursor to a 
box plot), and then standardized hat plots with their measures of center and spread. 
The final challenge for students was to construct a visual tool to combine the infor-
mation, which Allmond and Makar claim “resulted in a fairly seamless transition to 
the box plot” (p. 6). In this non-computational approach, they believed the students 
could visualize the distributions, the aggregate, and understood the purpose of the 
median and IQR, but they did not mention whether the students had grasped the 
underlying concept of density. Hence through an emphasis on visualizations, it 
would seem that students could access some of the underpinning concepts about 
comparing groups through developing intuitions from the concrete to the abstract.

Martignon and Krauss (2009) were inspired by research on the decision-making 
of physicians and investment managers (e.g., Gigerenzer, 2002) and the work of 
Fischbein (1975) on students’ probabilistic intuitions to challenge the notion that 
conditional probability logic should be taught at the secondary level. Based on the 
conviction that “stochastic literacy is a necessary condition for enlightened decision- 
making” (p. 117), they noted that current curricula were not preparing young stu-
dents to understand how probabilities shape judgments and decision-making in an 
information-based society. Therefore, they developed a sequence of hands-on activ-
ities with concrete materials that enabled 11-year-old students to visualize condi-
tional probability situations. They described how they scaffolded students from 
deterministic decision-making to probabilistic decision-making practices. Similar 
to the notion that students are initially better able to think with individual cases, they 
worked with representations such as tinker cubes and tinker towers “where tangible 
units encode not just individuals but their features” (p. 138). Their research indi-
cated that enhancing students’ perceptual capacity in the areas of proportional and 
probabilistic reasoning was a necessary step “towards probabilistic comparisons for 
decision-making and reckoning with risk” (p. 144). They stated unequivocally that 
if students are to reach competency within the probability arena, then it is essential 
that probabilistic reasoning and ideas about risk should be stimulated and be in the 
curriculum before the age of 10.

In a similar more informal vein and using TinkerPlots technology, Konold, 
Harradine, and Kazak (2007) described how students engaged with conditional 
probability ideas as they learned to create data factories that could produce imag-
ined objects such as cats, candies, and skateboards. Pratt and Noss (2010), on the 
other hand, described how ChanceMaker technology was designed deliberately to 
move students toward abstraction of concepts. Their tasks involved students testing 
conjectures and mending gadgets to facilitate conceptualization of ideas about fair-
ness and randomness. All these studies that we have described involved play-based 
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activities where young students could be introduced to key concepts in probability 
through visualizations. The curricular approach is to plant the seeds of concepts 
early in order for the concepts to be developed progressively toward more abstrac-
tion and more connectivity with other concepts.

Another area where visualizations for conceptual development have flourished is 
in the arena of statistical inference. With the realization that introductory students 
were finding statistical inference difficult and that the myriad of underpinning con-
cepts behind inference were not being established informally at earlier levels, the 
idea of informal inference gained traction in research (see Chap. 8) and conse-
quently in some curricula designs (e.g., Garfield et  al., 2012; Wild, Pfannkuch, 
Regan, & Horton, 2011). Focusing on the foundations of inferential reasoning not 
only led to curricula that attended to conceptual development using visualizations 
across the year levels but also to a reassessment of current inference practices result-
ing in these curricula adopting randomization and bootstrapping approaches (e.g., 
Garfield et al., 2012; Madden, 2008; Parsonage, Pfannkuch, Wild, & Aloisio, 2016; 
Pfannkuch, Budgett, & Arnold, 2015; Tintle, Topliff, Vanderstoep, Holmes, & 
Swanson, 2012). It is noteworthy that the adoption of the randomization and boot-
strapping approaches in these curricula involves using technology that allows con-
ceptual development through enabling students to visualize a phenomenon, to 
analyze directly the behavior of the phenomenon, and to visualize statistical pro-
cesses in ways that were not previously possible, such as viewing a process as it 
develops over time rather than analyzing it from the end result.

According to Garfield et al. (2015, p. 339), the curriculum should be organized 
“to recognize meaningful patterns of knowledge (e.g., web of concepts, visualiza-
tion of key concepts, and the relations among them),” a premise that we concur with 
in our reimagined curriculum approaches. More research on how and what type of 
visualizations can improve statistical conceptual understanding is now essential as 
well as identifying key concepts and mapping their development across the curricu-
lum levels.

12.3.4  Designing Investigations

Some school (e.g., Ministry of Education, 2007) and tertiary (e.g., MacGillivray & 
Pereira-Mendoza, 2011) curricula emphasize the importance of students experienc-
ing the whole statistical inquiry cycle from problem to conclusion. Students are 
encouraged to do projects where they have the opportunity to pose a question, 
design an experiment or survey, and collect and analyze their data. In practice much 
of the learning is focused on students using pre-existing data with the emphasis on 
the analysis and interpretation of the data. Within the constraints of a classroom or 
course, projects consume time and resources and do not allow for student-interest 
problems to be engaged in, such as allocating drugs to participants or observing the 
effects of sleep deprivation (Bulmer & Haladyn, 2011). Furthermore, one project, 
while an invaluable experience, does not give students the multiple experiences that 
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would be beneficial in providing them with an array of problem scenarios to draw 
upon when confronted with a new situation. Nor are they given opportunities to 
develop the many statistical concepts associated with linking the study design and 
the analysis and realizing how the design can affect outcomes.

Among researchers and teachers, therefore, is a belief that students’ lack of 
understanding about study design is affecting their ability to acquire the thinking 
and practice of statisticians. Some researchers (e.g., Konold & Higgins, 2002; 
Watson & English, 2015) have sought to address this problem through involving 
young students in thinking about posing investigative and survey questions and col-
lecting data from students in their class. However, there is limited research on stu-
dents’ conducting entire investigations or attending to study design (see Chap. 4).

At the tertiary level, some educators (e.g., Baglin, Bedford, & Bulmer, 2013; 
Bulmer & Haladyn, 2011; Darius, Portier, & Schrevens, 2007; Steiner & MacKay, 
2009) recognized that engaging students with the up-front phases of statistical 
investigation was necessary. All had experienced problems with projects, particu-
larly with large classes, with toy experiments that did not result in transfer of learn-
ing to real-world experiments, and with students’ inabilities to connect design and 
data production to analysis. To improve students’ design skills, these educators pro-
vided students with a design problem and context through the creation of virtual 
environments where the purpose was for the students to experience study design and 
data collection, that is, the obtaining of data. As Steiner and MacKay (2009, p. 364) 
stated, their virtual environment forced students to “repeatedly answer important 
questions … What is the goal of the investigation? Should we use an observational 
or experimental plan? What sampling protocol should we use? What inputs/outputs 
should we measure or set?” To these questions Darius et al. (2007) add that funda-
mental to design is context, which includes background knowledge about the envi-
ronment. These educators reimagined curriculum approaches in response to “the 
holes in our educational fabric … where methodology meets context” (Wild, 2007, 
p. 225) through attending to development of essential statistical concepts for statis-
tical reasoning in designing investigations through a virtual environment learning 
strategy.

An example of a virtual environment is that of Bulmer and Haladyn (2011) who 
designed an Island with virtual inhabitants on whom the students can conduct a 
wide variety of experiments, observational studies, and surveys. The data are col-
lected in collapsed real time, and since the Island has been inhabited since 1779, 
students have access to ancestral health and demographic records. Based on actual 
research data such as effects of alcohol on blood pressure, body temperature, and 
general health, simulations are used to generate the data that students observe. 
Students need to pose a question; design their study; decide what measurements to 
take; contact a sample of inhabitants, who can refuse to participate; apply the treat-
ments and tasks; and collect the data. Once the data are collected, they can transfer 
the data to a statistical program to analyze the data. Another example of a virtual 
environment is that of Darius et al. (2007) who designed a greenhouse applet where 
the goal is to find the optimal dose of nitrogen fertilizer that produces a maximum 
average biomass for 144 tomato plants. The greenhouse has heating elements and 
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lights, both of which affect plant growth. Students need to place each tomato plant 
on the greenhouse floor, define and assign treatments, define and assign blocking 
factors and levels, and decide how long plants should grow. Once the design is in 
place, the students press the grow button and the growth of each plant is then simu-
lated. The students then analyze the data produced.

According to these educators, the virtual environments enhance student engage-
ment (Baglin et  al., 2013), allow the flexibility for mistakes and ability to redo 
experiments (Steiner & MacKay, 2009), and give opportunities to enhance student 
communication and argumentation. Students also perceive that their learning is 
improved (Baglin et al., 2013). Darius et al. (2007) note that because students had 
different experimental designs for the greenhouse, they could compare, contrast, 
and discuss principles of design more effectively during teaching. Furthermore, the 
greenhouse acted as a touchstone example for student understanding when they 
illustrated more complex experimental designs. Although there is no research evi-
dence, these educators believe that the use of virtual environments enables students 
to grasp more fully the ideas behind study design and the linkages between design 
and analysis.

Wild (2007) described virtual environments as having unparalleled potential to 
augment statistical reasoning and thinking and believed they would develop further 
if they were modular and open source. Virtual environments lack research on stu-
dent interaction with them and how the environments might be enhancing students’ 
statistical thinking. It is a rich area for curriculum consideration and research. The 
virtual environments that these educators created have the following hallmarks, 
which future research could seek to emulate: access to previously inaccessible con-
cepts and ideas, identification of a gap in student understanding about design issues 
that is at the level of an enduring idea, promotion of essential learning experiences, 
fostering of statistical argumentation, and closing of the gap between education and 
statistical practice. Therefore, in our reimagined curriculum approaches, students 
will be able to enter virtual environments that “will be surrogates for the ‘real 
world’; virtual worlds in which students can design and conduct investigations” 
(Wild, 2007, p. 323).

12.3.5  Evaluating Arguments and Statistical Literacy

Why can students “compute a standard deviation [yet cannot spot an] example of 
poor statistical reasoning” (Utts, 2010, p.  1)? Why do students not distinguish 
between “absolute and relative risks” in media stories (Kurz-Milcke, Gigerenzer, & 
Martignon, 2008, p. 18)? Educators and researchers are becoming increasingly wor-
ried that students are not learning statistical ideas that are needed to make informed 
decisions in daily life and about societal issues. Current curricula are inadequate for 
educating people to evaluate data-based arguments critically (Gal, 2002), to under-
stand risk (Gal, 2005; Gigerenzer, 2014), and to recognize the pitfalls of using 
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heuristics when making judgments (Kahneman, 2011). Gigerenzer (2014) even 
argues for a revolution in the school curriculum with respect to risk literacy.

Garfield and Ben-Zvi (2008) frame statistical literacy in terms of both data pro-
ducer and data consumer stating it involves understanding and using basic statistical 
skills, such as being able to construct, recognize, and interpret displays. From a data 
consumer perspective, Gal (2002) defines statistical literacy as people’s ability to 
interpret and evaluate critically statistically based information from a wide range of 
sources and to formulate and communicate a reasoned opinion on such information. 
Watson (2013) concurs with this definition but argues that it applies to adults, and 
for students to become statistically literate, they must experience the processes of 
conducting statistical investigations to be able to judge the claims of others. We 
claim that all students will remain statistically illiterate if critically evaluating other 
people’s statistically based reports is not explicitly taught (Gal, 2002; Gigerenzer, 
2014; Schield, 2010; Utts, 2010).

To become statistically literate, Gal (2002, p.  3) argues that cognitively there 
needs to be a joint activation of “a knowledge component (comprised of five cogni-
tive elements: literacy skills, statistical knowledge, mathematical knowledge, con-
text knowledge, and critical questions) and a dispositional component (comprised 
of two elements: critical stance and beliefs and attitudes).” In Gigerenzer’s (2014, 
p. 247) view, risk literacy requires statistical thinking, rules of thumb for “making 
good decisions in an uncertain world,” and learning about the psychology of risk 
concerning “the emotional and social forces that guide our behavior.” To envision 
including statistical literacy in the curriculum seems daunting considering the com-
plexity of integrating a web of ideas and concepts needed for understanding and 
critically evaluating statistical evidence in reports. Nevertheless there is research 
available that looks at the type and levels of students’ statistical literacy and ways 
statistical literacy might be conceived and practiced in future curricula.

Watson (1997) researched school students’ interpretation of media reports and 
from the student data developed a hierarchy of three levels necessary for statistical 
literacy: basic understanding of probabilistic and statistical terminology, under-
standing of statistical language and concepts embedded in wider social discussion, 
and challenging claims in the media. Watson and Callingham (2003, p. 20) built on 
this hierarchy and found that “statistical literacy is a complex construct that may be 
thought of as a thick thread or rope comprising two interwoven essential strands: 
mathematical/statistical understanding of the content and engagement with the con-
text in exploiting this understanding.” Furthermore, Watson (2013, p. 60) suggested 
that as students move through the school curriculum experiencing the issues and 
uncertainties associated with statistical investigations, they should “be exposed to 
media claims to test their critical thinking skills.” She demonstrated how middle 
school students could learn how to develop a questioning attitude to claims (Watson, 
2008). To test a media claim that brown-eyed people had faster reaction times than 
people with other eye colors, students could collect data using their class and then 
augment the data collected from other students. Consequently students could start 
to appreciate the role of sample size and to develop the propensity to think critically 
when faced with media claims. Constant exposure to evaluating data-based media 
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arguments that are prevalent in students’ everyday lives could be embedded into the 
school curriculum and attended to in teaching.

Drawing on Gal’s (2002) ideas, the following researchers deliberately attended 
to activating cognitively his prescribed knowledge and dispositional components, 
directly teaching statistical literacy involving media reports, and exploring students’ 
resultant reasoning. Merriman (2006) found that her 14-year-old students became 
more aware and skeptical of statistics found in media reports and had to use a much 
higher level of thinking. Sharma, Doyle, Shandil, and Talakia’atu (2011) found that 
13-year-old students could develop critical thinking skills including questioning 
and challenging data and that context and literacy placed huge demands on students, 
which teachers were able to ameliorate. Rose (2012) developed a learning trajectory 
for 17-year-old students in preparation for the introduction of a curriculum standard 
entitled Evaluate Statistically Based Reports and concluded the trajectory needed 
12 key components, some of which were literacy support, extending students’ cur-
rent statistical and contextual knowledge base, the use of “worry” questions, and 
development of students’ ability to communicate in writing a critical evaluation of 
a media report. Budgett and Pfannkuch (2010a, 2010b) interviewed students who 
had completed an undergraduate course involving the evaluation of data-based 
media arguments. The students reported and demonstrated in tasks given to them 
that they had increased their awareness of issues underpinning statistically based 
information in the media and in everyday life.

For learning about risk argumentation, the most extensive research has been con-
ducted by Gerd Gigerenzer and his associated researchers. For example, Kurz- 
Milcke et al. (2008), Gigerenzer (2014), and Martignon and Krauss (2009) report 
that risk literacy can be taught to all ages provided new teaching approaches are 
employed, such as using natural frequencies rather than probabilities, population 
diagrams for displaying false positives, and using icons to encode information. 
Pratt, Levinson, Kent, Yogui, and Kapadia (2012) further developed the idea of risk 
literacy when they delved into how teachers weighed up evidence when confronted 
with many sources of evidence for determining whether to go ahead with an opera-
tion that could cure a painful spinal condition. Their findings demonstrated the rich-
ness and complexity of decision-making in the presence of uncertainty and how 
personal factors were involved. Hence we believe the probability curriculum must 
include developing students’ understandings about risk, as risk ideas permeate our 
society and are fundamental in decision-making.

Developing students’ propensity to identify statistical situations embedded in 
everyday contexts and to evaluate critically and challenge data-based arguments 
should be given high priority in research. “Critical thinking using data is an increas-
ingly important core life skill” (Nicholson, Ridgway & McCusker, 2010, p. 5) and 
is essential for a vision of society as a “participatory democracy” (Gigerenzer, 2014, 
p. 261). We believe that the evaluation of data-based arguments must be in the spot-
light when reimagining curriculum approaches.
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12.4  Fostering Statistical Reasoning

With technology facilitating a refocusing of learning on reasoning from plots rather 
than constructing plots, consideration needs to be given to fostering the ability of 
students to reason and argue in the statistics arena. In this section we discuss some 
current and future issues with regard to argumentation in statistics and other 
disciplines.

12.4.1  Argumentation in Statistics

Increased emphasis in statistics on interpretation, argumentation, and communica-
tion means reasoning from data is paramount, yet it has been identified as problem-
atic. Biehler (1997, p. 176) noticed the problem of verbalization when he stated:

An adequate verbalization is difficult to achieve and the precise wording is often critical. 
There are profound problems to overcome in interpreting and verbally describing statistical 
graphs and tables that are related to the limited expressability of complex quantitative rela-
tions by means of a common language.

Ridgway, Nicholson, and McCusker (2007) identified the same problem in their 
research when they reported that teachers found interpretation the most difficult part 
to model for their students. They referred to a “scarcity of resources which offer 
advice on strategies for interpreting data, or on a suitable language to use in describ-
ing patterns in data” (p. 1). They believed students needed to experience multiple 
contextual situations not only to unlock the stories in the data but also to communi-
cate and verbalize those stories. Pfannkuch, Regan, Wild, and Horton (2010) also 
found, when designing exemplars, that it was difficult to verbalize the rich concep-
tual repertoire underpinning plots and to express clearly and precisely their interpre-
tations and reasoning from data. In New Zealand the introduction of a focus on 
communicating statistical reasoning and evidence for claims in the curriculum and 
assessment resulted in mathematics teachers realizing that they needed to improve 
students’ verbalizations and their general literacy. Hence research is needed on what 
constitutes good argumentation practices and how to grow and scaffold students’ 
argumentation. Within this argumentation contextual knowledge is essential as data 
and context are inextricably linked (Cobb & Moore, 1997).

Fostering statistical argumentation should be an integral part of the classroom 
culture across all levels. Interrogation, argumentation, and reasoning from data need 
to start as soon as students are introduced to data. Fielding-Wells and Makar (2015) 
illustrate vividly how inquiry-based statistical classrooms can engage young stu-
dents in using evidence to back or challenge a claim, while Makar, Bakker, and 
Ben-Zvi (2016) describe how argumentation-based inquiry norms can be estab-
lished in a classroom (see Chap. 16 for discussion on creating learning environ-
ments where argumentation-based inquiry is central). In our reimagined curriculum 
approaches, fostering statistical argumentation and reasoning will be paramount 
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including developing ways of transforming the argumentation and language of 
novice- invented descriptions of evidence to the precise wording and language of 
experts.

12.4.2  Statistics Argumentation in Other Disciplines

Data science is prevalent in an ever-increasing number of disciplines, which Finzer 
(2013) says involves mathematics and statistics, discipline context knowledge, and 
computing and data skills. The rapid and exponential rise of data science that tran-
scends disciplines and subject matter content has resulted in a worrying gap between 
the “need for a data savvy citizenry” and education practice (Finzer, 2013, p. 1). He 
argues that all learners need to acquire data habits of mind, such as graph the data 
and look for and tell the story behind the data, across all the subjects they study. 
Finzer (The Concord Consortium, 2015) is now leading the development of open 
source software to serve curriculum development projects with the goal of growing 
data-literate citizens through facilitating students’ engagement in data exploration 
and argumentation in many different subject areas. We predict that in the far future, 
teachers in all disciplines will be teaching students how to use data sources to argue 
in their subject area because when “learning these other subjects statistics is neces-
sary” (Usiskin, 2014, p. 11).

In our reimagined curriculum approaches, we conjecture that statistics educators 
and statisticians will need to attend to data science across many fields (see Chaps. 1, 
13 and 15). Already in tertiary curricula courses, such as psychology, instructors 
teach the statistics pertaining to their field within their context (e.g., Rowe, 
McKinney, & Wood, 2010). Primary and middle school teachers tend to teach across 
subject areas allowing scope for using data as evidence across many contexts (e.g., 
Konold & Higgins, 2003). At secondary school, where subjects tend to exist in silos, 
the use of data in other fields becomes problematic. For example, Jowsey (2007) 
found that biology teachers tended to use a black box approach to statistics leading 
to misuse of regression and correlation ideas. Collaboration with statistics teachers 
could have led to students using the statistical skills they already had (e.g., box 
plots) rather than regression with which they were not familiar.

In the near future, however, we envisage more attempts at learning how to argue 
with data in different disciplines. To illustrate how future approaches might begin, 
we describe how researchers from three different countries have moved to other 
discipline areas. Erickson (2012) in the USA describes how he collaborated with a 
history teacher to facilitate students (17-year-olds) to argue and make claims about 
a phenomenon that changed over time in US history by using census data from 1900 
to 2000. The main focus of the student projects was to use the data to help support 
the story they were telling as well as to conjecture reasons for the occurrence of the 
phenomenon. The art of telling stories from data is prominent in the research of 
Ridgway, Nicholson, and McCusker (2008), who decided that providing resources 
for other subject areas was the only way in the UK to promote curriculum reform in 
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statistics. In social science classrooms, they trialed resources based on topics such 
as alcohol use and poverty and used an accessible analytic tool for multivariate data. 
They showed that 11–14-year-olds “across the attainment range can engage with 
and understand complex messages in [multivariate] data” (p. 5). Another observa-
tion was that the social science teachers, although weak in statistics, were able to 
facilitate students into gaining substantive insights from the data. Moreover, the 
students were engaged and able to communicate the stories in the data. In the 
Netherlands the government response to a lack of connection between statistics and 
natural sciences was to introduce a new subject Nature, Life and Technology for 
16–18-year-olds. Dierdorp, Bakker, Eijkelhof, and van Maanen (2011) described 
how they designed resources by educationalizing elements of authentic practices. 
They designed resources for identifying the best training program for athletes to 
improve their physical condition and for monitoring the height of dykes in order for 
students to learn more about regression and correlation. They believed their strategy 
supported students’ learning about how to use data in these disciplines as well as 
improving their knowledge and understanding of statistics (see also Dierdorp, 
Bakker, Ben-Zvi, & Makar, 2017). Thus the gap between practice and education can 
start to be actively closed through collaboration between statistics and other disci-
pline educators and promotion of data science within other subject areas.

Statistics education researchers could take the lead and prioritize exploring ways 
to develop students’ statistical argumentation across multiple contextual situations 
because in reimagining curriculum approaches, we envisage that statistical argu-
mentation will be an integral part of the learning of statistics and other disciplines.

12.5  Developing Curriculum Change Approaches

Reimagining curriculum approaches is an essential precursor for the development 
of new national curriculum documents. Advocates for reform, however, must not 
only have a vision for new curricula but also must consider strategies for imple-
menting their vision. Each country will have its own system for developing new 
national curriculum documents and the consequent implementation of the curricu-
lum. Strategies to instigate change will depend on the education culture in a country, 
but there will be some commonalities across countries. First is the consideration 
that changing curricula expectations has enormous flow on effects to many stake-
holders in an education enterprise (e.g., assessment developers, parents). Second, to 
ensure implementation of new curriculum approaches, many collaborations may 
need to be formed and driven by groups willing to be involved at all stakeholder 
levels. Policymakers, statisticians, researchers, teachers, students, and software and 
resource/textbook designers may need to work together on designing, interpreting, 
and implementing curricula to match the vision for what is taught and how it is 
taught. Third, new curriculum approaches and ways of learning and assessment may 
need to be connected and integrated at the school, state/national standard tests, state/
national qualifications, and policy and political levels. Fourth, there may need to be 
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recognition that a new curriculum should be an educative curriculum (Stein et al., 
2007) whereby teachers may need to learn new content and approaches to learning. 
Some countries may need to seek ways for facilitating teachers and students to leap-
frog from 1960s mathematics curricula into contemporary statistics education prac-
tices. Finally, the reimagined curriculum may not match the reality in practice, but 
without a vision the curriculum cannot evolve.

In this section we briefly discuss some potential issues in developing curriculum 
change approaches to embed new curricula (see Chap. 16 for a full discussion) and 
the necessity for assessment to be changed to match new curricula learning goals 
and intent.

12.5.1  Changing to the Twenty-First Century Statistics 
Curricula

How can a twenty-first century statistics curriculum be provided to all students? 
Drawing on the perspectives of researchers from two countries, Kenya and Brazil, 
we discuss their current approaches to this problem and what lessons can be learned 
more generally. Both countries have similar problems: they note that their teachers 
lack content knowledge and confidence, teach prescriptively from textbooks, lack 
experience with technology, and have a mathematical approach to statistics. 
Although the problems are similar, the solutions appear to depend on the resources 
and culture of the community. According to Stern (2013, p. 1), Kenya lacks “an 
educational culture that embraces and encourages” change, resulting in initiatives 
making no substantive difference to student learning and outcomes. Also, unlike 
Brazil, there seems to be no established community of mathematics and statistics 
education researchers and little professional development for teachers.

In Kenya, Stern (2014) and Manyalla, Mbasu, Stern, and Stern (2014) believe 
that technology may be the key ingredient in provoking change as long as access is 
free, it can be in the hands of each student, and teaching resources accompany the 
technology. Their most successful initiative seems to be the use of Computer- 
Assisted Statistical Textbooks (CAST) (Stirling, 2005), an idea that seems to be 
very similar to their current reliance on textbooks and where the teachers may feel 
more confident and comfortable. Manyalla, et al. (2014) describe how students who 
used CAST outperformed students who did not use CAST in the national examina-
tions resulting in other teachers being willing to try CAST in their classrooms. 
Furthermore students using CAST were more engaged in statistics, liked the inter-
active style, and were able to peer teach themselves such that they leaped beyond 
the statistical knowledge of their teacher (Zachariah Mbasu, personal communica-
tion, July 2012).

In Brazil, an approach to change teachers’ attitudes toward statistics and statis-
tics teaching has been through teacher learning communities. The ethos behind such 
learning communities is that innovation and change for teachers takes long-term 
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commitment and is based on teachers and researchers collaborating to identify 
problem areas and ways of resolving them. For example, Souza, Lopes, and 
Pfannkuch (2015) describe a potential model for developing middle school teacher 
expertise where a community of teachers is exposed to new ideas, collaboratively 
plans lessons and implements them in their classrooms, reports back to the group, 
and critically reflects on their practice. Nacarato and Grando (2014) describe a simi-
lar model except they used videos of implementations for group reflection.

From the experience of these researchers in these two countries, it seems that a 
general consideration for all countries is to think about curriculum change as an 
evolutionary process and that facilitators within the community who work alongside 
teachers are best placed to implement change. A common factor was facilitators 
starting with groups of teachers who were willing to trial changes in their classroom 
that were not too far from current practice. When teachers noticed and experienced 
their students’ engagement and success using new statistics teaching approaches, it 
seemed that they became more responsive to change. We suggest that reimagining 
curriculum approaches, as these researchers noted, also requires attention to current 
resources available, the development of resources, the education culture of the com-
munity, the adoption of accessible technology for all, and innovative strategic think-
ing for enhancing teacher knowledge and practice. With the availability of MOOCs 
(see Chap. 1) and e-resources such as CAST, groups of students and teachers may 
even be able to bypass moribund education systems and educate themselves. 
However, the reigning assessment system may prevent such an action.

12.5.2  Assessment

Assessment drives what is taught and valued. As curriculum goals shift emphasis 
from computational skills toward deeper conceptual understanding, reasoning from 
data, and evaluating statistical arguments, different types of assessment methods are 
essential. As Garfield and Ben-Zvi (2008, p. 66) stated, “assessment should be care-
fully aligned with the important and valued learning goals.” If the learning goals of 
a curriculum are not aligned with assessment practices, then priority in teaching will 
be given to the assessment goals. Also assessment tasks convey information about 
the nature and role of the discipline and what thinking and reasoning are valued. In 
an analysis of the high-stake statistics assessment in the UK, McCusker, Nicholson, 
and Ridgway (2010) concluded that the tasks conveyed an impoverished view of 
statistics. Similarly Callingham (2011) suggested that statistics was portrayed as 
simple mastery of skills for educational measurement purposes in Australia result-
ing in a limiting primary curriculum. Ridgway et al. (2008) also noted how assess-
ment limited primary and middle school students to univariate data, whereas in 
practice the students were quite capable of dealing with multivariate data.

For new types of curricula, important learning goals and guiding principles 
(Garfield & Franklin, 2011) need to be identified and enacted as the following two 
examples illustrate. Garfield, delMas, and Zieffler (2010) demonstrate how their 
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valued learning outcomes of literacy, reasoning, and thinking could be assessed in a 
written examination where computer output is given and responses range from 
extracting statistical information from plots, reasoning about underlying statistical 
ideas, to interpreting and critiquing statistical claims in a full written format. They 
also mention ARTIST, an online database of items that assess these outcomes using 
three types of format (open-ended, multiple-choice, performance task). These 
researchers identified the learning outcomes that were important for their introduc-
tory course and matched the assessment to those outcomes. Similarly, Budgett and 
Pfannkuch (2010a) describe their statistical literacy course, where the learning 
goals were to evaluate statistically based studies; to construct statistically sound 
statements, graphics, and reports; and to recognize statistical concepts in everyday 
events. Consequently their assessment is aligned to these goals as students are 
required, for example, to critically evaluate a study, write a statistically sound news-
paper report from a study, and reason statistically about everyday events such as 
recognizing regression to the mean.

In a technology environment—where computations and representations are auto-
mated—interpretation, argumentation, and communication can be given primacy in 
teaching. This type of reasoning is much more demanding conceptually and requires 
literacy abilities. With access to more powerful ways of understanding statistics, 
students also have the opportunity “to appreciate utility: how and why … the statis-
tical idea is useful” (Ainley & Pratt, 2010, p. 2). For example, students can experi-
ence graphs as tools for interpretation and analysis rather than tools for displaying 
the end results. Utility is a facet that Ainley and Pratt (2010, p. 2) believe is missing 
from many approaches to assessment where both procedural and conceptual knowl-
edge seem to be equated with “how to calculate or represent statistical objects.” 
Ainley, Pratt, and Hansen (2006) think designers of tasks should include the assess-
ment of students’ understanding, for example, of the utility of a statistical measure 
(e.g., mean, spread).

The impact of technology on teaching and learning and on the understanding of 
students has not generally been matched by developments in assessment. If learning 
involves using technology for analysis, for conceptual development, and to build 
probability models, then the same technology should be used in assessment. For 
example, in New Zealand school-based national assessment standards allow stu-
dents to conduct investigations using technology (e.g., iNZight) including writing a 
full report, while in the USA the Advanced Placement Statistics examination inte-
grates technology through graphing calculators and including statistical output in 
some questions (Garfield & Franklin, 2011). Furthermore, Callingham (2011) con-
tends that traditional assessment items could disadvantage students who use tech-
nology for learning, as they may have developed a different cognitive infrastructure 
from those students in a traditional setting. She believes that “the nature of the 
changes to cognition needs to be identified … [and is an] area that needs further 
research” (p. 9).

Assessing only the mastery of procedural skills will not provide evidence of the 
new curricular goals of literacy, reasoning, and thinking (Garfield & Ben-Zvi, 2008; 
Garfield et al., 2010). As Callingham (2011, p. 9) states, “it is time to reconsider the 
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assessment challenge and develop new approaches that take account of both tech-
nology use by students and the power of technology to deliver assessment.” In our 
reimagined curriculum approaches, the curriculum should drive assessment, 
whereby student assessment is aligned with the goals of learning and the technology 
used by the students. Furthermore, guiding principles and goals (see Garfield & 
Franklin, 2011) should be developed, implemented, and used by assessment devel-
opers whether high stakes or teacher designed.

12.6  Conclusion

It is predicted that change in the first quarter of the twenty-first century will be 
equivalent to the change in the entire twentieth century. Curricula usually have a 
lifetime between 10 and 20 years, and consequently any new curriculum approaches 
must step into the unknown and be prepared to be constantly innovative and respon-
sive to new unimagined possibilities. As new societal learning goals are formulated 
and technological tools constantly change the way we interact and think with data, 
an articulated vision of future curriculum approaches is essential to challenge edu-
cators to travel down uncharted pathways.

Our reimagining of curriculum approaches applies across the education spec-
trum from kindergarten to tertiary levels. We acknowledge the constant change 
wrought by technology, which is changing our thinking tools. We propose that stu-
dents be immersed in data-rich environments with more emphasis on probability 
modeling. Virtual environments need to be considered and developed further in 
order to assist students to connect study design with analysis and also could be 
expanded into new territory where virtual worlds could become surrogates for real- 
world statistics and probability problems. These types of learning environments we 
envisage can facilitate students’ understanding of statistics through enabling them 
to enter into the playgrounds of statistics and probability. Purpose-built learning 
technology can also advance students’ understanding to unprecedented levels 
through allowing access to previously inaccessible concepts through the visual 
senses including dynamic visualizations. With the ability of technology to help 
build conceptual understanding via visualizations, we envisage curricula will 
emphasize conceptual development and that coherent conceptual pathway progres-
sions across all levels will be mapped for many areas of statistics and probability 
and in many diverse ways.

With the rapid changes in technology, it has become important to establish and 
teach the enduring ideas and concepts that underpin statistical knowledge, thinking, 
reasoning, and arguing. We believe these enduring ideas and concepts should be 
part of the essential learning experiences of students, experiences that are active, 
interactive, and coherent. Furthermore, society is demanding evidence-based argu-
ments, which are proliferating in people’s everyday life and at societal levels. To 
engage in a participatory democracy, it is crucial that statistics curricula respond, 
and therefore, we believe a learning goal should be evaluating data-based  arguments, 
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a skill that needs to be directly taught in order to inculcate the necessary higher 
levels of thinking needed to be truly statistically literate. Fostering statistical argu-
mentation in statistics and other disciplines is a high priority as data science becomes 
ubiquitous across many fields of endeavor. The automation of plots and analyses 
can redirect learning to concentrate on learning how to argue with and from data, 
with the context, and communicating verbally and in writing well- reasoned claims 
based on the data for the purpose of advocacy or inquiry. Development of such skills 
is paramount in today’s statistical world.

In reimagining curriculum approaches, we also briefly highlighted the large 
number of stakeholders influenced by changes in curricula. We believe local and 
global connectivity can help teachers and education systems in transforming their 
curricula, where pathways to change may be unique to each community and culture. 
With regard to assessment, matching curricular goals and the technology used for 
learning is essential for implementation of future curricula aspirations. Curricular 
change also cannot occur without the international and local statistics communities 
forming collaborations themselves among statisticians, educators, and researchers 
and continuing to be prepared as groups to promote their discipline and to be active 
in promoting a vision for statistics curricular approaches.

Questioning current practices, inventiveness, pushing the frontiers of possibili-
ties, and cutting-edge research are the hallmarks of much of the research and inno-
vations quoted in this chapter. Our articulated vision of future curricula will only 
come to fruition if researchers and educators continue to follow these researchers’ 
footsteps and provide further foundations for constructing new learning approaches 
and new curricula. In reimagining curriculum approaches, we recommend possible 
avenues for future research:

 – More insight into fostering statistical argumentation including learning how to 
make evidence-based claims in data-rich environments and critically evaluating 
data-based arguments in diverse media from a statistical literacy perspective

 – In-depth studies on probability modeling, risk, and designing investigations to 
learn how to scaffold students’ reasoning and to identify key issues that need to 
be addressed before designing curricula in these new areas

 – More insight into how visualizations may enhance student conceptual under-
standing in order to understand the advantages, pitfalls, and visual design con-
siderations when students reason from visual representations of stochastic ideas 
and processes

 – Development of coherent curricula conceptual pathways and infrastructure that 
pay attention to and identify enduring notions that will prevail despite changes in 
technology and will make sense from a student perspective (Bakker & Derry, 
2011)

As technology continues to shape the statistics discipline and learning approaches, 
our wish is that researchers in all countries will challenge current practice and con-
tinue to re-envisage curriculum approaches in ways not yet imagined.
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Chapter 13
Challenge to the Established Curriculum: 
A Collection of Reflections

Robert Gould, Roger D. Peng, Frauke Kreuter, Randall Pruim, Jeff Witmer, 
and George W. Cobb

Abstract We invited a number of prominent statisticians and statistics educators to 
glimpse into the future to discuss what they see as the significant challenges to the 
established statistics curriculum that enculturate students into statistical practices 
that underpin the activity of statisticians. Peng, Kreuter, and Gould discuss various 
developments, which are already gaining traction in current society and will support 
the notion of immersion in a data-rich curriculum. The influence of MOOCs, “big 
data,” and Bayesian approaches is primarily discussed by these writers in relation to 
an undergraduate curriculum. Pruim raises some key questions about teaching com-
putation in statistics with a particular emphasis on undergraduates and program-
ming. In the final piece of writing, Witmer and Cobb discuss the increasing influence 
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of Bayesian inference with an emphasis on a curriculum that fosters statistical 
reasoning and the evaluation of arguments.

Keywords Data analysis • MOOC • Big data • Data science • Technology • 
Bayesian statistics • Secondary education • Computation • Analytics • Messy data • 
Participatory sensing • Programming

13.1  Introduction

Chapter 12 (Pfannkuch, this volume) reimagines curriculum approaches that encul-
turate students into statistical practices that underpin the activity of statisticians but 
perhaps are not given sufficient emphasis in today’s school curriculum. We invited 
a number of statisticians and statistics educators to glimpse into the future to discuss 
what they see as the significant challenges to the established curriculum.

In the brief writings presented below, Peng (Sect. 13.2), Kreuter (Sect. 13.3), and 
Gould (Sect. 13.4) discuss various developments, which are already gaining traction 
in current society and will support the notion of immersion in a data-rich curriculum 
as proposed by Pfannkuch in Chap. 12. The influence of MOOCs, “big data,” and 
Bayesian approaches is primarily discussed by these writers in relation to an under-
graduate curriculum. We note though that MOOCs offer access to nonspecialists 
and in high schools most teachers of statistics are in fact nonspecialists in the statis-
tics discipline. Furthermore, the emergence of big data offers opportunities for mul-
tidisciplinary work which could be of interest to high schools and demands new 
ways of thinking about statistical inference as currently taught in high schools.

In her vision, Pfannkuch assumes that technology will be an integral part of sta-
tistics curricula. Below, Pruim (Sect. 13.5) raises some key questions about teaching 
computation in statistics with a particular emphasis on undergraduates and pro-
gramming. In some countries, for example, the UK, programming has been redis-
covered as a key skill for the twenty-first century, and so we believe that the questions 
raised by Pruim have significance for all levels of schooling.

In the final piece of writing, Witmer (Sect. 13.6) and Cobb (Sect. 13.7) discuss the 
increasing influence of Bayesian inference, which speaks to Pfannkuch’s emphasis 
on a curriculum that fosters statistical reasoning and the evaluation of arguments.

13.2  The Massive Future of Statistics Education
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Department of Biostatistics
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Everywhere you turn, data are being generated somehow. By the time you read 
this piece, you’ll probably have collected some data. You can’t avoid data—it’s 
coming from all directions.

So what do we do with all these data? For the most part, nothing. There’s just too 
much data being spewed about. But for the data that we are interested in, we need 
to know the appropriate methods for thinking about and analyzing them. And by 
“we,” I mean pretty much everyone.

In the future, everyone will need some data analysis skills. People are constantly 
confronted with data and the need to make choices and decisions from the raw data 
they receive. Phones deliver information about traffic, ratings of restaurants or 
books, and even rankings of hospitals. High school students can obtain complex and 
rich information about the colleges to which they’re applying, while admission 
committees can get real-time data on applicants’ interest in the college.

How will people be trained in statistics and in understanding uncertainty in the 
future? How can we scale that training to meet that enormous demand that has been 
generated in such a short period of time? Massive open online courses (MOOCs) 
offer one possibility to deliver content and training in a high-bandwidth, low-cost 
format that is accessible to a broad audience.

Our educational system has insufficient capacity. The McKinsey Global Institute, 
in a highly cited report (Lund, Manyika, Nyquist, Mendonca, & Ramaswamy, 
2013), predicted that there would be a shortage of “data geeks” and that by 2018 
there would be between 140,000 and 190,000 unfilled positions in data science. In 
addition, there will be an estimated 1.5 million people in managerial positions who 
will need to be trained to manage data scientists and to understand the output of data 
analysis. If history is any guide, it’s likely that these positions will get filled by 
people regardless of whether they are properly trained. The potential consequences 
are disastrous as untrained analysts interpret complex big data coming from myriad 
sources of varying quality.

Who will provide the necessary training for these unfilled positions?
The field of statistics’ current system of training people and providing them with 

master’s degrees and PhDs is woefully inadequate to the task. In 2013, as reported 
by the American Statistical Association, the top ten largest statistics master’s degree 
programs in the USA graduated a total of 730 people (Pierson, 2014). At this rate 
we will never train the people needed. While statisticians have greatly benefited 
from the sudden and rapid increase in the amount of data flowing around the world, 
our capacity for scaling up the needed training for analyzing those data is essentially 
nonexistent.

On top of all this, I believe that the McKinsey report (Lund et al., 2013) is a gross 
underestimation of how many people will need to be trained in some data analysis 
skills in the future. Given how many data are being generated every day, and how 
critical it is for everyone to be able to intelligently interpret these data, I would 
argue that it’s necessary for everyone to have some data analysis skills. Needless to 
say, it’s foolish to suggest that everyone get a master’s or even bachelor’s degrees in 
statistics. We need an alternate approach that is both high quality and scalable to a 
large population over a short period of time.
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13.2.1  Massive Open Online Courses (MOOCs)

There has been a major push to create statistical content that can be delivered in the 
format of a massive open online course (MOOC). A few examples of this include 
Statistics One by Andrew Conway (2014) of Princeton University, Data Analysis 
and Statistical Inference by Mine Cetinkaya-Rundel of Duke University, and 
Passion Driven Statistics by Lisa Dierker of Wesleyan University. While such online 
courses have existed for quite some time in a variety of fields, the very low-cost 
structure of many MOOCs has opened the doors to a much larger audience and has 
increased the accessibility of statistical content.

In 2014, Jeff Leek, Brian Caffo, and I launched the Johns Hopkins Data Science 
Specialization. This is a sequence of nine courses that intends to provide a “soup-to- 
nuts” training in data science for people who are highly motivated and have some 
basic mathematical and computing background. The sequence of the nine courses 
follows what we believe is the essential “data science process,” which is:

 1. Formulating a question that can be answered with data
 2. Assembling, cleaning, and tidying data relevant to a question
 3. Exploring data, checking, and eliminating hypotheses
 4. Developing a statistical model
 5. Making statistical inference
 6. Communicating findings
 7. Making the work reproducible

We took these basic steps and designed massive open online format courses 
around each one of them. We developed this sequence of courses in part to address 
the growing demand for data science training and education across the globe. Our 
background as biostatisticians was very closely aligned with the training needs of 
people interested in data science because, essentially, data science is what we do 
every single day. Indeed, one curriculum rule that we had was that we couldn’t 
include something if we didn’t in fact use it in our own work.

The sequence has a substantial amount of standard statistics content, such as 
probability and inference, linear models, and machine learning. It also has nonstan-
dard content, such as Git, GitHub, R programming, Shiny, and Markdown.

To date, the sequence has been wildly successful. It averaged 182,507 enrollees 
per month for the first year in existence. The overall course completion rate was 
about 6%, and the completion rate among paid enrollees was 67%. In October of 
2014, barely 7  months since the start of the specialization, we had 663 learners 
enroll in the capstone project.

 From running the Data Science Specialization, we have learned a number of 
lessons. Here, I summarize the highlights:

 1. Data science as art and science. Ironically, although the word “science” appears 
in the name “data science,” there’s actually quite a bit about the practice of data 
science that doesn’t really resemble science at all. Much of what statisticians do 
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in the act of data analysis is intuitive and ad hoc, with each data analysis being 
viewed as a unique flower.

When attempting to design data analysis assignments that could be graded at 
scale with tens of thousands of people, we discovered that designing the rubrics 
for grading these assignments was not trivial. The reason is because our under-
standing of what makes a “good” analysis different from a bad one is not well 
articulated in the field of statistics. We could not identify any community-wide 
understanding of what constitute the components of a good analysis. What are 
the “correct” methods to use in a given data analysis situation? What is definitely 
the “wrong” approach? Without such a well-defined framework, useful rubrics 
are almost impossible to build. We resorted to building fairly minimal assess-
ments, but we believe further research and thinking in this area is sorely needed.

 2. Content vs. curation. Much of the content that we put online is available else-
where. With YouTube, it is possible to design a course with high-quality videos 
on almost any topic, and our videos are not really that much better. Furthermore, 
the subject matter that we were teaching was in no way proprietary. The linear 
models that we teach are the same linear models taught everywhere else. So what 
exactly was the value we were providing?

Effectively, what we provided was a curation of all the knowledge that’s out 
there on the topic of data science (we also added our own quirky spin). Curation 
is hard, because the curator needs to make definitive choices between what is and 
is not a core element of a field. But curation is essential for learning a field for 
the uninitiated.

 3. Skill sets vs. certification. Because we knew that we were not developing a tradi-
tional degree program, we knew we had to develop the program in a manner so 
that the learners could quickly see the value of the program for themselves. This 
led us to taking a portfolio approach where learners produced things that could 
be viewed publicly.

 4. New avenues for educational research. The size and scale of MOOCs created 
new opportunities for us to conduct research, both by analyzing the data gener-
ated by the students enrolled in the courses (and there was a lot of data) and by 
asking students to volunteer in research studies. For example, we conducted a 
study of students’ abilities to assess the statistical significance of a correlation 
based on visual displays of data (Fisher, Anderson, Peng, & Leek, 2014). Others 
have used data generated by MOOCs to study specific pedagogical aspects (e.g., 
see Guo, Kim, & Rubin, 2014).

13.2.2  Conclusions

As of April 2015, we have had a total of 1158 learners complete the entire special-
ization, including the capstone project. Given these numbers and our rate of com-
pletion for the specialization as a whole, we believe we are on our way to achieving 
our goal of creating a highly scalable program for training people in data science 
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skills. Of course, this program alone will not be sufficient for all of the data science 
training needs of society. But we believe that the approach that we’ve taken, using 
nonstandard MOOC channels, focusing on skill sets instead of certification, and 
emphasizing our role in curation, is a rich opportunity for the field of statistics to 
explore in order to educate the masses about our important work.

13.3  Inference from Big Data: A Cross-Disciplinary 
Endeavor

Frauke Kreuter
University of Maryland
College Park, MD, USA
University of Mannheim
MannheimGermany
fkreuter@umd.edu

Excitement about big data is visible across many, if not all, disciplines. Business 
analytics, computational social science, and data intensive linguistics are just a 
short collection of buzzwords in the behavioral and economic sciences. A similar 
list could be created for other disciplines as well. Such interest in data is a wonder-
ful opportunity for statistics education, but the burden is on our shoulders to trans-
late the relevant concepts into frameworks useful and applicable in the various 
disciplines.

Big data have been defined with certain characteristics (e.g., the three v’s: veracity, 
volume, variety) that challenge standard inferential practices. In particular, the lack of 
a random sample, combined with the large volume of data, often results in a purely 
descriptive approach. However, standard inference has always faced challenges. For 
example, beautiful theory justifies drawing inference from a sample to the population, 
even if the sampling process is complex because it includes multiple stages, as when 
sampling schools, classrooms within schools, and finally students within classrooms, 
or because data are collected on the entire clusters at one of the stages.

Unfortunately, the reality of data collection rarely matches the assumptions 
required of sampling theory. Breakdowns in the data generating process bring into 
question the well-grounded methods we would like to apply. For the school example 
above, it is not hard to imagine that principals or teachers might deny access to 
students or are not able to grant access because of other more important activities 
going on at school. In household surveys people get sick, are on vacation, or don’t 
want to participate because they lack interest or motivation to answer the survey 
request. Such breakdowns are not threatening per se. As long as they occur at ran-
dom, or as long as the mechanism is known and observable, we know how to still 
create valid inference. Often, neither is the case.

These challenges to standard inferential paradigms have been present for quite 
some time. However, with the advent of big data, it is tempting to be blindsided by 
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the sheer massiveness of the available data and to overlook the importance of 
knowing the data generating mechanism here as well. This is not to say that size 
doesn’t solve some of the problems or could help mitigate them. But knowing if that 
is the case or not requires a deep understanding of the data generating processes if 
inference is the goal.

Here are some questions that every analysis of big data should ask. These ques-
tions should be familiar to all data analysts: What are the proper units of analysis to 
answer our research question? Are all units we need in the analysis? Are certain 
units systematically missing? Do some units appear multiple times? Do we have all 
measures on all units that we need? Whom do the units represent?

Answers to these questions are much easier when the data collection itself is orga-
nized by the researcher, ideally with the help of a statistician. If data evolve “organi-
cally” and are “found” by the researcher, extra effort will be needed to find the right 
answers. If Amazon is interested in the correlation between the purchases of two differ-
ent books on amazon.com, they can of course analyze the population, and no inference 
problem would be needed. But if, for example, Twitter feeds are examined to measure 
health or political attitudes, then inference is much harder for some research questions 
than for others. If trying to answer questions concerning the frequency of health prob-
lems or the reoccurrence of health problems, then irregularity of postings, censoring of 
posts, social desirability, and other issues make the analysis much less straightforward.

Most likely it will be impossible to answer the basic questions posted above 
without talking to domain experts. Which means in the future, statistics education 
has to be even more of a cross-disciplinary approach than it currently is. We need to 
better understand how to teach students to collaborate with researchers in other 
disciplines, how to better communicate, and how to ask the right questions of big 
data. When data are collected on humans, the psychologists, sociologists, econo-
mists, linguists, etc. will all be able to contribute fundamentally to the understand-
ing of the data generating process. Exciting times head of us!

13.4  Data Science in Secondary Schools

Robert Gould
University of California
Los Angeles, CA, USA
rgould@stat.ucla.edu

Ask a statistician about the future of the profession, and you can expect to hear such 
trending phrases as “big data,” “data science,” and maybe even “analytics.” These 
terms are sometimes dismissed as hype—media-friendly buzzwords that repackage 
what statisticians have always done: find meaning in data.

But to dismiss these as hype misses an important point: data have changed. The 
open-data movement has brought large, rich, and relevant data to anyone with 
Internet access (e.g., see data.gov and data.gov.uk). Sensors collect data without 
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human intervention, leading to nonrandom high-density sampling protocols and, 
often, the creation of “opportunistic” data. Compared to traditional classroom data, 
these data have great many variables, are rich in high-dimensional relationships, 
have a complex structure, are daunting in terms of the number of observations, and 
consist of values that are not always usefully coded as numbers.

Primary and secondary school statistics curricula, in sharp contrast, focus on 
datasets with one or two variables in which the data have either been randomly 
sampled from a population (which is often finite though large) or in which units 
have been randomly assigned to treatment groups. Observational data are included 
but often pared down to a manageable number of variables and, more often than not, 
used as a cautionary tale against inferring causality or performing uninterpretable 
inferential procedures. The Guidelines for Assessment and Instruction in Statistics 
Education (GAISE), for example, describes three developmental levels, which cul-
minate in formal statistical inference (Franklin et al., 2007). Students learn descrip-
tive statistics and exploratory techniques early on as a means of preparing them for 
the more complex concepts that support inference.

Why, then, should schools include data that are messy and complex and don’t fit 
into the learning trajectory established by the curriculum? Because these modern 
data are data that students see every day. For example, students who play online 
games have data collected about their performance, and these data are shared with 
other players. Students who wait for a bus might see data displays predicting the 
arrival of the next bus. Swipe cards, closed-circuit cameras, and large public data-
bases mean that much data about students are stored on the Internet. Whether they 
want to or not, students are already engaged with modern data. This naive engage-
ment can be dangerous, since modern data raise ethical questions about privacy, 
confidentiality, and anonymity. But modern data are exciting because they provide 
opportunities. Many datasets are sufficiently complex that it is realistic to motivate 
students by reminding them that they can discover something that no one else 
knows. Further, because of the abundance of technology for sharing, sending, and 
analyzing data, students who know just a little about analyzing data will be advan-
taged over those who know nothing.

Working with the Mobilize project, a National Science Foundation-funded part-
nership between the University of California, Los Angeles Statistics Department; 
the Graduate School of Education and Information Sciences; and the Los Angeles 
Unified School District, I′ve had the opportunity to think about how students might 
interact with modern data. Mobilize provides students with a suite of software and 
curricular materials to allow them to carry out “participatory sensing campaigns” 
(Tangmunarunkit et al., 2015). Participatory sensing is a data collection paradigm in 
which students, acting as human sensors, collect data about their communities and 
their environment as they go about their everyday life (Burke et  al., 2006). For 
example, students might collect data on where they discard trash and then use data 
on the location of trash and recycling bins to draw conclusions about how recycling 
can be improved.
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Students can use the Mobilize dashboard to visually investigate patterns in the 
data they have collected. The dashboard allows students to quickly and easily visu-
alize multidimensional relationships between variables. For instance, in one  scenario 
students have seen that classmates who ate cereal in the morning at home tended to 
rate cereal as a healthier food than did classmates who ate cereal late at night at 
home. While the dashboard is helpful for discovering patterns, formulating hypoth-
eses, and framing statistical questions, students also learn to use R, via Rstudio, to 
develop statistical models for these data in a more deliberate and reproducible 
fashion.

The data collected through participatory sensing are not “big,” but they are unde-
niably modern and share many important characteristics with “big data.” For 
instance, they are collected through a deliberate and yet nonrandom procedure, and 
they are complexly structured and consist of a variety of types: numerical, categori-
cal, date, time, location, text, and image. These data provide a detailed picture of 
aspects of students’ lives. Interpreting these data requires not only the usual grasp 
of fundamental statistical notions of distribution and variability but also a sense of 
the exact constitution of the “inferential universe.” Participatory sensing data can 
therefore serve as a bridge toward formal statistical inference, while in the mean-
time providing students with interesting and rewarding insights.

When data from a completed campaign are first displayed in the classroom on an 
interactive map (using the geocoding provided by the smartphone), there is often a 
collective gasp in the classroom when students see their own daily patterns revealed. 
(For privacy purposes, and to help make students aware of privacy matters, data are 
not visible until a student explicitly shares the data, and even then teachers have the 
ability to purge the data of problematic observations before the data are displayed.) 
The abstract conversation about privacy and confidentiality is made concrete, and 
even students whom we may have presumed to be jaded regarding privacy are star-
tled by just how much a collection of observations can reveal when they realize 
others could deduce where they live and where they spend their time, based on, say, 
where they are eating their meals and snacks.

These projects underline the need to know more about how students think about 
modern data, how they can be taught to reason with such data, and what learning 
trajectories we should design. Kreuter, elsewhere in this chapter, reminds us that 
thinking carefully about the underlying assumptions behind a statistical analysis 
will never go out of style, regardless of whether data are big or small. I suspect that 
all of the statistical concepts and skills taught with “traditional data” will be 
extremely valuable when learning to analyze modern data. But I also suspect this set 
of concepts will be too small.

Here is my personal short list of topics that are rarely taught at the secondary 
level but are potentially accessible and useful: programming, algorithmic thinking, 
smoothing, nonlinear modeling, goodness of fit, kriging (smoothing and interpolat-
ing across spatial processes), classification and regression trees, and density estima-
tion. Each of these is a big idea, but I’d encourage researchers to help us understand 
just how soon we can introduce these topics and at what level of detail.
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13.5  Some Questions About Teaching Computation 
in Statistics

Randall Pruim
Department of Mathematics and Statistics
Calvin College
Grand Rapids, MI, USA
rpruim@calvin.edu

It is not enough to be convinced that the use of computation by both teachers and 
students is an important part of statistics education, nor even to be committed to 
modifying our courses and curricula in keeping with this conviction. We need to do 
more than merely use computation; we must use it effectively, inspiringly, and in a 
way that prepares students to learn more than we teach. But how do we do that? And 
what do educators need to learn in order to do this well?

Below I discuss several questions about teaching statistics. Some of them may be 
hard questions or may require significant refinement to make them tenable for study. 
Some answers may be informed by data we do not currently have. But they are 
important questions, and the answers will go a long way to shaping the evolution of 
statistics curricula and educational practice over the next decade.

13.5.1  How and When Should Statistics Students Learn 
the Computational Tools and Skills they Require?

Consider the following from the ASA Undergraduate Curriculum Guidelines (UCG) 
published by ASA (American Statistical Association Undergraduate Guidelines 
Workshop, 2014):

The additional need to think with data in the context of answering a statistical question repre-
sents the most salient change since the prior guidelines were endorsed in 2000. Adding these 
data science topics to the curriculum necessitates developing data, computing, and visualiza-
tion capacities that complement more traditional mathematically oriented statistical skills.

It now seems that nearly everyone agrees that computational proficiency is an impor-
tant goal for both undergraduate and graduate statistics programs and that most cur-
rent programs are deficient in meeting this goal. There is also increasing pressure to 
introduce computational aspects of statistics in courses for nonmajors. There is much 
less agreement about what steps should be taken to improve the situation. This is a 
rather broad question, so let’s break it down into some more focused questions.

13.5.2  What Programming Skills Do Statistics Students Need?

According to UCG , thinking with data is a cognitive skill that requires some techni-
cal skills in data, computing, and visualization. The challenge is in determining 
which skills to teach and how to teach them in a way that prepares students to 
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continue to learn new things upon completion of their programs. While obtaining 
some level of proficiency with particular technological skills is important for com-
pleting the task at hand, having a conceptual framework and the confidence neces-
sary to continue to learn new data technologies as required is even more valuable, 
especially since it will never be possible to teach students all the computational 
skills that would be beneficial in the context of a statistics program.

Enumerating key concepts required to think with data, and understanding how 
students come to learn them, is an important prerequisite to understanding the impli-
cations of curricular and pedagogical decisions aimed at developing this capacity.

13.5.3  What Can We Learn from the Computer Science 
Education Community?

It would be naive to think that statisticians have nothing to learn from computer sci-
ence educators about how to teach computation. It would also be naive to assume 
that both groups have identical goals for the computational training of students. But 
there can be little doubt that statistics education researchers interested in how to 
improve the computational abilities of statistics students should be aware of the 
work that has been done in the computer science education community and main-
tain a dialogue with computer science education researchers about current thoughts, 
work, and trends.

It may require some effort to build bridges between these two communities, but 
computer scientists are also interested in data science, big data, and many of the 
other buzzwords of the day, so there are more potential conversation starters than 
ever before.

13.5.4  Has the “Probability and Mathematical Statistics” 
Sequence Become Antiquated?

Most of the textbooks in this area still reflect an outline of topics that goes back to 
classic texts such as Hogg and Craig (1959). Few include significant treatment of 
newer computationally intensive methods (e.g., randomization testing, bootstrap 
methods, numerical Bayesian procedures); present methods for handling large, 
complex, or unsanitized data; or take advantage of computational tools to treat 
familiar topics in different ways. Most enforce a fairly clean separation between a 
probability course and a statistics course (which generally assumes a previous prob-
ability course).

For more than a decade, there have been calls to rethink which elements of sta-
tistical theory are most important for undergraduates to master in a climate where 
computation both enables and requires statisticians to work differently (e.g., in a 
session entitled “Is the Math Stat course obsolete?” at the 2003 Joint Statistics 
Meetings (Rossman & Chance, 2003)), but a decade later, it appears we have not 
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reached a consensus. Some more recent books (e.g., Chihara & Hesterberg, 2011; 
Pruim, 2011) are moving things in directions that were not available when Hogg 
and Craig’s texts were first published, including computational methods and the 
theory that supports them, but it would be possible to push things further in this 
direction.

The growing emphasis on data, computational, and visualization skills is one 
reason that now is an important time for the mathematical statistics course to be 
reevaluated with an eye toward determining the most important foundational topics 
for the next generation of statisticians.

13.5.5  How Well Do We Understand the Statistics Education 
Landscape?

The Mathematical Association of America recently conducted a 5-year study of 
calculus instruction funded by the NSF with primary goals to (1) improve our 
understanding of the demographics of students who enroll in calculus and (2) to 
measure the impact of the various characteristics of calculus classes that are believed 
to influence student success.

David Bressoud (former president of the MAA and PI for the study) concluded 
that the study “revealed that Calculus I, as taught in our colleges and universities, is 
extremely efficient at lowering student confidence, enjoyment of mathematics, and 
desire to continue in a field that requires further mathematics (Bressoud & 
Rasmussen, 2014).” At the same time, the study identified seven characteristics of 
calculus instruction at institutions that “bucked this trend”.

Perhaps it is time to launch a similarly ambitious study of statistics education. 
Informed by the approach and results of the MAA study, and broadening the scope 
beyond the United States, a similarly comprehensive investigation of undergraduate 
statistics instruction could be very informative and provide a much better view of 
the landscape than we currently have.

13.6  To Bayes or Not to Bayes? (The Answer Is Yes)

Jeff Witmer
Oberlin College
Oberlin, OH, USA
jeff.witmer@oberlin.edu

The undergraduate statistics curriculum is built on the philosophical base of fre-
quentist reasoning. This school of thought is so pervasive that most students are not 
aware that there is an alternative: Bayesian reasoning.
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A Bayesian analysis of a medical trial (to take a specific example) focuses on 
what most people would consider to be the natural question of interest: “Does the 
drug work?” In contrast, traditional (i.e., frequentist) inference is developed around 
an indirect question:

“If this drug is not effective, how likely would it have been to see data such as the 
data that arose?” No one getting a prescription from a doctor wonders how data 
might look if the drug doesn’t work; instead they wonder what the chances are that 
the drug will work for them. A Bayesian analyst asks “How likely is it that the effect 
of the drug is positive, given the data?” and might conclude “Given the data, I 
believe the probability that the drug works is 97%”.

Students in frequentist-based statistics courses often want to interpret a p-value 
as the probability that the null hypothesis is true but are admonished by their profes-
sors that this is not correct reasoning. A Bayesian, on the other hand, is allowed to, 
and indeed must, talk about the probability that the null hypothesis is true (e.g., 
there is a 3% chance, given the data, that the drug has no effect).

If Bayesian inference provides a direct answer to the question of interest, then 
why is this not the dominant school of thought in statistics? There are several rea-
sons that frequentism has held center stage for many years. (1) Until recently 
Bayesians were limited by difficult mathematics and therefore often found them-
selves restricted to working on a small class of problems. (2) Although some people 
might have no difficulty imagining a study being repeated an infinite number of 
times under a given (null hypothesis) scenario, they are unwilling or unable to imag-
ine the effect of a drug as a random quantity. (3) Some people are uncomfortable 
with the idea that two statisticians can look at the same data and reach somewhat 
different conclusions just because they started with different prior beliefs; e.g., a 
second statistician studying the drug experiment might say “Given the data, I believe 
the probability that the drug works is 98%.” (4) There has been little research into 
how students reason in a Bayesian context, so those who want to teach Bayesian 
methods might be unsure of what path to take.

Times are changing. Recent advances in computing power and software develop-
ment have led to big changes in the application of Bayesian statistics. Computers 
have made possible Markov chain Monte Carlo (MCMC) methods that allow 
Bayesians to solve problems that were once considered intractable. Today, a 
Bayesian can fit flexible and complex models that allow one to tackle a wide class 
of problems.

Regarding (2), that we should treat the parameter of interest (in our case, the 
effectiveness of a drug) as a fixed, unknown quantity and imagine repeated samples 
of hypothetical data, one can become quite comfortable with the concept of a param-
eter as being unknown and thus subject to a probability distribution. Indeed, people 
assign probabilities to unobserved, but fixed, quantities all the time. For example, 
toss a coin and let it fall on the floor, but step on it before seeing whether it landed 
heads up or tails up. Pretty much everyone at this point is willing to say “The prob-
ability of heads is ½” despite there being nothing random after the coin is tossed. If I 
can’t see the coin, then its status (as heads up or tails up) is effectively random to me.

13 Challenge to the Established Curriculum: A Collection of Reflections



428

Regarding (3), there are many things that can be said. One is that the proper use 
of prior information should inform statistical and scientific inference. Another is 
that frequentists are happy to use a directional (versus a typical, nondirectional) 
alternative hypothesis when prior information tells them that only one direction is 
plausible. But beyond this is the fact that as more and more evidence accumulates, 
Bayesians who start with rather different prior beliefs will converge to the same 
posterior beliefs, which renders moot the objection that scientists should not 
disagree.

If one is convinced that Bayesian statistics is worth teaching, then how should it 
be done? Software plays a crucial role in Bayesian practice and thus in Bayesian 
teaching. In recent years tools such as JAGS and Stan have been introduced that 
make MCMC somewhat easier to use.

A reality check is in order. MCMC has changed the world of Bayesian methodol-
ogy, yet as of 2016 we don’t have the kind of user-friendly, menu-driven implementa-
tions of MCMC that a novice would find easy to use. But this is changing; for example, 
see the BEST website (Bayesian estimation supersedes the t-test, at www.sumsar.net/
best_online) to get a taste of how Bayesian methods can be used. Despite a paucity of 
user-friendly software, some of us teach Bayesian methods with MCMC in under-
graduate courses. In the Bayesian course that I teach to undergraduates, I go into a fair 
amount of detail regarding how MCMC works. However, one can use MCMC without 
knowing exactly what the computer is doing, much as one can use a t-table without 
first deriving the t density. Thus, it is certainly possible to teach a Bayesian course that 
has exactly the same prerequisites as does a standard introductory frequentist course.

Any university student majoring in statistics should learn about Bayesian meth-
ods and MCMC (see also Cobb, this chapter). A nonmajor taking an introductory 
course (which is often the student’s last formal statistics course) should be exposed 
to Bayes’ theorem and the rudiments of Bayesian inference, as one can expect to see 
more use of Bayesian methods across many fields of study in the years ahead, con-
tinuing a trend that began when MCMC became a workable tool.

The fact that Bayesian reasoning is more natural than frequentist reasoning and 
that computers are making Bayesian methods increasingly accessible leads me to 
expect continued growth in the teaching of Bayesian reasoning in the years ahead. 
As ongoing research in statistics leads to better understanding of how students learn, 
I hope that more attention is paid to Bayesian reasoning. But mostly I hope that 
educators will teach Bayesian methods to their students.

13.7  Getting to Bayes in Our First Course: Education 
Research Can Lead the Way

George W. Cobb
Mt. Holyoke College
South Hadley, MA, USA
gcobb@mtholyoke.edu
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In 2016 Bayesian inference and Bayesian hierarchical models occupy a major posi-
tion within applied statistics. However, when it comes to Bayesian thinking, our 
introductory courses and corresponding research on teaching and learning are still 
back where things stood 45 years ago when I was in graduate school. I confess that 
it took me 25 years to overcome my own resistance to Bayes and another 10 to find 
a way to teach it in a first course, but I’m confident that those who study how we and 
our students understand data can get to Bayes a lot faster than I did. In what follows, 
I describe five obstacles, five things that Bayes was not: In practice, the Bayesian 
approach was considered (1) not objective, (2) not computable, and so (3) not 
broadly applicable. For the elementary course, the Bayesian approach was consid-
ered (4) not accessible and (5) not mainstream.

The next sections use my own conversion to Bayes as a vehicle to discuss (1–3) 
and then tell how I dealt with (4 and 5) to include Bayesian thinking in a first statis-
tics course, and finally, I conclude with a wish list of five areas where I hope for 
aggressive research by those who have an interest in statistics and a background in 
cognitive science.

My conversion to Bayesian thinking. In my first job after college, I worked as a 
computer programmer and earned a master’s degree in the Department of Biometry 
at the Medical College of Virginia. No one used or taught Bayesian methods. Using 
a prior distribution made the methods “not objective” and so not scientific. Moreover, 
the computations required for any but the simplest applications were beyond the 
capacity of the computers and numerical methods of the day because they involved 
high-dimensional integrals. In the early 1970s at Harvard, the applied courses were 
equally Bayes-free. I encountered Bayesian thinking only in a single theory course, 
and there only as a method for deriving admissible estimators, which were called 
“Bayes” estimators but were not really Bayesian. My only experience with a genu-
ine use of Bayesian thinking came from reading the Mosteller and Wallace (1964) 
study of the authorship of the Federalist Papers.

A lot changed during the next 20 years. Box and Tiao (1973) got around many 
computational problems by using conjugate priors and presented a Bayesian 
approach to many traditional applied problems such as ANOVA and regression. 
Reanalysis using a range of prior distributions made it possible to assess sensitivity 
to choice of prior and so moderated concerns about subjectivity. Most dramatically, 
various versions of Markov chain Monte Carlo (MCMC) methods were adapted to 
compute posterior distributions for a rapidly growing set of applied problems.

As a result of these and related developments, Bayesian data analysis has become 
mainstream as one major part of statistical practice. However, teaching Bayesian 
thinking in a first statistics course is still rare.

My conversion to teaching Bayesian data analysis. For decades, one of the prin-
cipal objections to teaching Bayes has been that “Bayes is not mainstream.” That 
remains true of introductory courses, but it is certainly no longer true of professional 
practice. These days Bayesian data analysis (e.g., multilevel models) is definitely 
mainstream. As I see it, there remains one major obstacle: Bayesian methods are not 
thought to be accessible at an elementary level. It was only after I found a way 
around that obstacle that I began teaching Bayes in a first statistics course.

13 Challenge to the Established Curriculum: A Collection of Reflections
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My experience in the classroom convinced me that the essence of Bayesian logic 
is intuitive and that the main obstacle to teaching Bayes is not conceptual, but tech-
nical. In the next section, I suggest six research questions related to those convic-
tions. By way of introduction, I first summarize the approach I have used to introduce 
Bayesian applications in a first course, (1) compute conditional probabilities by 
restricting the sample space, and (2) substitute Laplace for Bayes:

 1. Compute conditional probabilities by restricting the sample space. The tradi-
tional approach to Bayesian inference depends on the formal definition of condi-
tional probability and, most importantly, on the denominator in P(A|B) = P(A 
and B)/P(B). My experience tells me that all probabilities are conditional, defined 
by choice of sample space, and that P(A|B) is the primitive concept, with P(A 
and B) as a corollary, as in the logic of tree diagrams: P(A and B) = P(B)P(A|B). 
(See research topic c below.)

 2. Substitute Laplace for Bayes. The traditional approach via Bayes’ theorem, viz., 
P(q|X = x) = P(X = x|q) P(q)/P(X = x), puts an unnecessary focus on the denomi-
nator P(X  =  x), which is a multiple integral over the entire parameter space. 
Laplace put it more simply by ignoring the denominator: P(q|X = x) is propor-
tional to P(X = x|q). His principle, which I call “Laplace’s data duplication prin-
ciple,” supports all of Bayesian thinking. In my paraphrase of Laplace, “A 
parameter value is believable to the extent that it can reproduce the observed data 
value.” In the hope of making Laplace’s principle concrete and intuitive, I have 
come to rely on a “Russian roulette” algorithm. The name comes from Kahn 
(1955) and refers to evaluating conditional probabilities by “killing” outcomes 
that fail to satisfy the condition. My adaptation to create a Bayesian posterior for 
parameter q given data yobs is a four-step process (generate, simulate, compare, 
and estimate):

 (a) Generate a random value of the parameter q, according to the prior.
 (b) Simulate a data value yrand according to P(y|q).
 (c) Compare: Is yrand = yobs? If no, kill q. If yes, keep q.
 (d) Estimate: Values of q are saved in proportion to how frequently they repro-

duce the observed value yobs. Thus the saved values estimate the posterior.

This algorithm is horrendously inefficient, but I find that it is an intuitive way to 
explain Bayesian thinking. (See research topic d below.)

Five topics for research. As I see it, taking Bayes seriously opens the door to 
myriad unexplored research questions we need to pursue. Here are five:

 1. Use of probability to quantify uncertain knowledge. To what extent and in what 
ways is this subjective use of probability intuitive? In what ways does it lead to 
misconceptions? (Compare interpretations of Bayesian posterior intervals and 
confidence intervals. Students often misinterpret confidence intervals as Bayesian 
posterior intervals.)

 2. Predictive versus postdictive uses of probability. This pre-post distinction is due 
to A.P. Dempster (1964). Pre: Assume a fair coin, which you plan to toss ten 
times. Before the toss, the predictive probability of ten heads is 1/1024. Post: 
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Now assume that all ten tosses came up heads. The probability 1/1024 is now 
postdictive. What does this mean? Fisher used p-values as a measure of surprise, 
as evidence against the initial model. Laplace assumed that P(X = x|q) is propor-
tional to P(q|X = x): the observed x was used as evidence in favor of q values. 
These two interpretations are Bayesian (Laplace) and non-Bayesian (Fisher). 
Both are important and valid. How can research help us figure out how to teach 
them both?

 3. Conditional probability: dump the definition? Which approach to P(A|B) is more 
intuitive: P(A) with the sample space restricted to B, and with P(A and B) as a 
corollary, or P(A|B) = P(A and B)/P(B)?

 4. Laplace’s “data duplication principle.” We need research: In what contexts and 
to what degree is it intuitive that P(q|X = x) is proportional to P(X = x|q)?

 5. Incorporating prior information and sensitivity analysis. If we accept Bayesian 
logic as an important approach to data analysis, we need to address the challenge 
of subjectivity, by changing the prior and tracking the consequences. Is this 
intuitive?

Over a lifetime as a statistician, I have become convinced that Bayesian logic 
will become more and more important as one essential part of thinking about data. 
In the past, research in statistics education has tended to track what we have already 
been teaching, sometimes in support, sometimes in question, but so far, not as a 
radical challenge. In suggesting a challenge, I am unsure about how best to integrate 
Bayesian thinking into our current teaching. The right research can help us decide.
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Chapter 14
Building Capacity in Statistics Teacher 
Education

João Pedro da Ponte and Jennifer Noll

Abstract This chapter focuses on building capacity in statistics teacher education, 
with a twofold purpose. First, this chapter reviews prior research into the profes-
sional development of teachers of statistics (elementary, middle, secondary, and 
tertiary teachers). This provides an overview of different approaches to professional 
development for teachers of statistics, challenges statistics educators face when 
building professional development programs, and lessons learned that can inform 
directions for future research. Second, this chapter looks forward by outlining major 
challenges, gaps in our knowledge base, and important directions for future research 
in the professional development of teachers of statistics. We outline a vision for the 
future of professional development that focuses on building capacity through a 
strongly integrated focus on practice, content, and technology.

Keywords Building capacity • Professional development • Statistics teacher 
education

14.1  Introduction

The primary goal of this chapter is to look forward toward building capacity in sta-
tistics teacher education. By building capacity, we mean a conceptual approach to 
the professional development of prospective and practicing teachers and teacher 
educators, which address both quality and quantity with the goal of improving sta-
tistics education. For this, it is necessary to take a broad view of “statistics teachers.” 
Many of those who teach statistics are mathematics teachers, and some are science, 
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or computer science teachers who teach statistics within the context of their 
discipline. In primary schools, many teachers are generalists, teaching statistics as 
part of the mathematics curriculum. We therefore include in our discussion any 
primary, middle, secondary, and tertiary teachers who teach statistics.

Although teacher development may lead to positive changes in teaching practice 
(Franklin, 2014), there is a past record of inefficacy of conventional statistics teacher 
education (Ponte, 2011). The professional development of teachers of statistics is 
therefore a very prominent issue, presenting many challenges. However, before we 
begin the process of looking forward, we first look at the existing research on pro-
fessional development for teachers of statistics. What has been the typical environ-
ment for this professional development? In what ways have both in-service and 
preservice teachers been targeted? How has professional development focused on 
teachers’ content knowledge, practice, or the integration of the two? What has been 
the role of technology in professional development? What does prior professional 
development research tell us about the issues our community needs to address? 
What are the challenges educators face when developing and implementing profes-
sional development?

This chapter has six sections. The first section is a synthesis of the different envi-
ronments of professional development of statistics teachers described in the litera-
ture. The second focuses on teachers’ statistical content knowledge. This has been 
discussed in Chap. 10 of this handbook, but here we highlight how research that 
focuses on teachers’ statistical content knowledge may inform changes in profes-
sional development. In the third section, the role of technology in professional 
development is addressed, and in the fourth the focus is on teachers’ practice. The 
fifth section addresses the intersection of content, practice, and technology in pro-
fessional development. Finally, we leave the reader with lessons learned through a 
synthesis of the big ideas and challenges that emerge in the research literature and 
identify directions for future research toward building capacity in statistics teacher 
education.

14.2  Environment of Professional Development

A review of the literature reveals many different approaches to professional devel-
opment. It may be long term or short term; it may include mandated coursework for 
preservice or in-service teachers or optional courses or workshops for both pre- and 
in-service teachers developed through national organizations and grant initiatives. 
Professional development may be offered in face-to-face, online, or hybrid formats. 
It may focus on statistical content, on the practice of teaching statistics, or both. 
This section synthesizes key features of current professional development work.

The majority of the research into professional development reviewed for this 
chapter focused on mathematics teachers who also teach statistics, including ele-
mentary, middle, and secondary school teachers. Most focused on the professional 
development of preservice teachers during their mandated university coursework 
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(Batanero, Gea, Díaz, & Cañadas, 2014; Batanero, Godino, & Roa, 2004; Browning, 
Goss, & Smith, 2014; Canada, 2006; Confrey, Makar, & Kazak, 2004; Dolor & 
Noll, 2015; Garfield & Everson, 2009; Groth & Xu, 2011; Heaton & Mickelson, 
2002; Leavy, 2010; Lee & Hollebrands, 2008a, 2008b; Lee & Nickell, 2014). 
Sometimes this focus on university courses also included in-service teachers taking 
coursework for their continuing education requirements (Confrey et al., 2004; Groth 
& Xu, 2011; Madden, 2014; McClain, 2008; Meletiou-Mavrotheris & Mavrotheris, 
2007; Meletiou-Mavrotheris, Paparistodemou, & Stylianou, 2009; Serradó-Bayés, 
Meletiou-Mavrotheris, & Paparistodemou, 2014).

We hypothesize two reasons as to why more of research has focused within the 
context of preservice teachers. First, preservice teachers are the most readily avail-
able group for researchers working in university settings. Second, it is plausible that 
more researchers and educators are concerned that preservice teachers can be as 
prepared as possible before they enter their classrooms. Most of the professional 
development work occurred as part of university courses (for pre- and/or in-service 
teachers), typically over a 10- to 15-week period with approximately 3 h per week 
of meeting time. However, there were also a few short-term professional develop-
ment studies (e.g., 4 days in Madden, 2011) or longer-term studies (e.g., 6 months 
in Henriques & Ponte, 2014; 1 year in Wassong & Biehler, 2014; and 2 years in 
Makar, 2010).

A few professional development approaches used online or hybrid formats 
(Garfield & Everson, 2009; Meletiou-Mavrotheris & Mavrotheris, 2007; Meletiou- 
Mavrotheris et  al., 2009; Serradó-Bayés et  al., 2014). For example, Meletiou- 
Mavrotheris and her colleagues had success in collaborations with teachers in Spain, 
Cyprus, Greece, Norway, and Ireland. They developed EarlyStatistics, an online 
professional development program. Participating teachers from different European 
countries formed a virtual community of practice (Lave & Wenger, 1991), develop-
ing their own projects based on a wide array of resources, colleagues, and discus-
sions. They found that an international collaboration of teachers, through the 
creation of online communities, is able to share challenges many teachers face as 
well as new approaches to these challenges. These collaborations can be helpful to 
teachers in a range of contexts.

There are additional advantages of online and hybrid formats. For instance, 
online platforms have the potential to reach in-service teachers who live in rural 
locations and cannot regularly attend university classes. In addition, teachers have 
increasingly busy workdays and may be involved in after-school activities, so online 
professional development that is more accommodating to their busy schedules may 
encourage more participation. However, there are still challenges to this format. For 
example, Meletiou-Mavrotheris et al. (2009) and Serradó-Bayés et al. (2014) noted 
that misunderstanding of statistical ideas or strategies occurred as a result of cultural 
or linguistic barriers or stark differences in national or state curricula. In addition, 
challenges can exist with online formats if participation in group online chat is not 
maintained, as mentioned in Meletiou-Mavrotheris and Serradó-Bayés (2012). 
Elements in the design of online courses relate to how new material is introduced, 
the kinds of experiences it provides to learners, the nature and amount of interaction 
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between facilitators and learners and among learners themselves, and the content 
and structure of the course. The work described here suggests that building capacity 
in statistics teacher education through using technology to reach more teachers is an 
important component.

At the university level, the current state of preparation of teachers of statistics 
looks quite different. In contrast to the preparation of teachers in primary, middle, 
and secondary schools, there is no mandated preparation for those who go on to 
teach in higher education. As a result, there is very little research investigating the 
professional development for teachers of undergraduate statistics courses, who are 
often graduate teaching assistants. The few professional development approaches 
described in the literature are from institutions that have created courses to prepare 
their graduate teaching assistants for teaching introductory statistics (see Froelich, 
Duckworth, & Stephenson, 2005; Gelman, 2005; Harkness & Rosenberg, 2005). 
These professional development courses were one term (15  weeks in duration) 
meeting for only 1 h per week. They had two primary purposes: to provide graduate 
teaching assistants with examples of successful and unsuccessful teaching or how to 
act professionally in the classroom (not necessarily specific to the teaching of statis-
tics) and to provide activities and curriculum materials for teaching introductory 
statistics, with examples of how to implement activities in the classroom. For exam-
ple, Froelich et al. (2005) described an apprenticeship model where graduate stu-
dents begin their apprenticeship as graders and lab recitation leaders. These graduate 
teaching assistants worked closely with the course instructor to ensure consistency 
and to learn more about course material. Those who did well with these beginning 
teaching activities became course instructors. The department supported these 
teaching assistants by providing homework, answer keys, a syllabus, and lab assign-
ments. Teaching assistants also received a file of old exams and quizzes, lecture 
notes, and power point presentations to model their coursework.

Thompson and Johnson (2010) argue that easing into teaching statistics through 
this type of apprenticeship model (graders to tutors to lab recitation leaders to teach-
ers) is important for better preparing our future undergraduate statistics teachers. 
However, while these statistics-specific workshops for graduate teaching assistants 
should help prepare them for their teaching responsibilities and make them more 
comfortable in the classroom, they are not necessarily informing them about current 
research in how undergraduates learn statistics. These courses help graduate stu-
dents to more easily replicate the current teaching of statistics by their faculty mem-
bers. Further research in this area could provide the community with empirical 
evidence about graduate teaching assistants’ practice and subsequent impact on stu-
dent learning.
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14.3  Approaches to Building Capacity through Developing 
Teachers’ Content Knowledge

A major focus of this chapter is on building capacity in teachers’ statistical content 
knowledge via professional development. Overwhelmingly, the research suggests 
that professional development courses are the most effective when they focus on 
creating the sort of learning environment that statistics educators would like to see 
teachers develop in their classrooms (Canada, 2006; Lee & Hollebrands, 2011; 
Makar & Confrey, 2005; Meletiou-Mavrotheris et al., 2009; Pfannkuch, 2008; Pratt, 
Davies, & Connor, 2011). Suggestions for the design of teacher education courses 
include:

 1. Build on teachers’ experiences and prior knowledge (Henriques & Ponte, 2014; 
Makar & Confrey, 2005).

 2. Have teachers create lesson plans and questions for students (Lee & Nickell, 
2014; Pfannkuch & Ben-Zvi, 2011).

 3. Have teachers examine and respond to student work (Confrey et al., 2004; Lee & 
Nickell, 2014; Makar & Confrey, 2005; Makar & Fielding-Wells, 2011).

 4. Incorporate the big ideas of statistics into coursework (Browning et al., 2014; 
Madden, 2011; Makar & Confrey, 2005; McClain, 2008; Pfannkuch, 2008; 
Pfannkuch & Ben-Zvi, 2011).

A major strand of research concerning teachers’ professional development in 
statistics puts the notion of statistical investigation at the very center of the class-
room activity (incorporating the fourth suggestion mentioned above). In particular, 
the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 
reports (pre-K-12 report: Franklin et al., 2005; College report: American Statistical 
Association, 2016) have been influential documents, used by researchers from many 
countries as a way of structuring statistics activities in professional development 
settings (Browning et al., 2014; Dolor & Noll, 2015; Garfield & Everson, 2009; 
Green & Blankenship, 2013; Heaton & Mickelson, 2002; Henriques & Ponte, 2014; 
Lee & Hollebrands, 2008b; Meletiou-Mavrotheris & Mavrotheris, 2007; McClain, 
2008). The GAISE reports emphasize the process of statistical investigations sug-
gesting that teaching statistical ideas begin with the general approach to (1) formu-
late a research question, (2) collect data that could help answer the question, (3) 
analyze the data collected, and (4) interpret the results. The pre-K-12 GAISE report 
also contains three developmental levels that outline a progression in statistical lit-
eracy and highlight the notion of variability.

Statistical investigations are seen as being at the heart of the activity of statisti-
cians (see Chaps. 1 and 4 in this volume) and essential to provide students with a 
real sense of the activity. Statistical investigations are also a suitable way to intro-
duce students to the specific concepts, representations, processes, and procedures 
that constitute the statistics curriculum, from primary school to university. It has 
been argued that prospective teachers must learn about statistical investigations in 
order to use them later in their practice (Heaton & Mickelson, 2002; Makar & 

14 Building Capacity in Statistics Teacher Education



438

Fielding-Wells, 2011), to support children’s reasoning with data (Santos & Ponte, 
2014). They also need a disposition to teach in a way that recognizes the substantive 
knowledge in the different issues and topics addressed through investigations 
(Heaton & Mickelson, 2002).

Research has reported some successes with professional development that 
focuses on developing content knowledge through statistical investigations. For 
example, Leavy (2006) noted positive changes in prospective elementary teachers’ 
awareness of the importance of data explorations, increased attention to ideas of 
distribution, and increased ability to use alternative measures and representations 
when comparing data. However, a number of challenges are also reported in profes-
sional development settings where statistical investigations were the focus. Heaton 
and Mickelson (2002) noted that prospective elementary teachers focused mainly 
on technical components of investigation, losing site of the overall statistical pro-
cess. Santos and Ponte (2014) found the elementary teacher in their case study 
appeared focused on a sequence of techniques to apply rather than the overall statis-
tical process. Leavy (2006) also noted that many prospective elementary teachers 
focused on summary features of data and ignored variation.

The pre-K-12 GAISE report (Franklin et al., 2005) highlights the importance of 
the whole notion of what a statistical investigation is, beginning with the formula-
tion of a research question followed by the research design and data collection. 
However, some researchers have attempted to streamline parts of the statistical 
investigation process in professional development programs to more efficiently 
build teacher content expertise. In particular, some researchers have discussed sim-
plifying the data collection process by using data already available on the internet. 
For example, Hall (2011) suggested using primary and secondary data to simplify 
the problem formulation and data collection phases. In addition, Batanero et  al. 
(2014) used UNESCO data in their workshop for prospective high school teachers.

Makar (2010) conducted a long-term professional development project in teach-
ing statistical investigations with in-service elementary teachers. Her work involved 
23 primary teachers over a 2-year period. While teachers did indicate positive per-
spectives about what inquiry could mean for their students, they expressed many 
concerns such as curriculum/time pressures, classroom management issues, manag-
ing open-ended problems, and content knowledge of the statistical process.

Confrey et al. (2004) had another approach to using statistical investigations for 
professional development. In their work, they examined preservice middle and high 
school teacher’s content knowledge in a professional development course that 
focused on statistical investigations about equity and high-stakes testing. Teachers 
were asked to examine data on their students’ scores on high-stakes tests and inter-
pret the results in relation to educational equity. There were improvements of pro-
spective teachers’ posttest scores suggesting the teachers in their study improved 
their understanding of how to investigate and apply statistics in an authentic context. 
Their work also addressed three of the four points recommended above for profes-
sional development of teachers—building from prior experiences, responding to 
student work, and focusing on the big ideas of statistics.
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Metz (2010) also focused on statistical investigations, applying the pre-K-12 
GAISE report guidelines (Franklin et al., 2005) as well as of the College Board of 
Mathematical Sciences (CBMS) (Blair, Kirkman, & Maxwell, 2013) for a profes-
sional development course for prospective primary and middle school teachers. 
However, Metz’s work was different from other statistical investigation approaches. 
Metz wanted prospective teachers to make connections between content in the 
investigations and what they might teach. Metz asked teachers to map statistical 
activities to the GAISE developmental levels (A, B, and C) and consider how an 
activity could be modified or revised for use at a lower or higher level. This approach 
differs from other work focused on statistical investigations in that there was a more 
explicit attempt to connect investigations to teaching practice and to understand a 
particular statistical investigation through the three levels of GAISE. This work has 
the promise of helping prospective teachers think about where their students may be 
coming from (an earlier GAISE level of statistical literacy) and where they may be 
going to (an advanced GAISE level). However, Metz focused on teachers’ evalua-
tions of the course, which were generally positive, but provided little in the way of 
informing the community about whether teachers improved their content knowl-
edge or their knowledge of implementing GAISE ideas at the different developmen-
tal levels.

A different approach to building capacity in teachers’ content knowledge during 
professional development was the incorporation of the Realistic Mathematics 
Education (RME) and guided reinvention framework used by Dolor and Noll 
(2015). They incorporated the theory of RME that mathematics should be learned 
naturally as students work to solve problems that are realistic to them (see 
Gravemeijer, 2004 and Chap. 16 in this volume) and apply this approach to work 
with statistics teachers. Pre- and in-service high school teachers enrolled in a 
10-week professional development course focused on statistical investigation and 
the big ideas of statistics. Classroom activities were designed around an instruc-
tional sequence focused on reinventing significant ideas of hypothesis testing. The 
goal was not for them to develop hypothesis testing as might be seen in an introduc-
tory statistics text but rather to support and motivate the teachers in (re)inventing an 
informal hypothesis test for categorical data. Several of the teachers in this study 
successfully reinvented an informal test similar to a chi-square test.

The professional development of teachers of undergraduate statistics courses at 
colleges and universities deserves special mention. In the United States, undergrad-
uate statistics courses are on the rise at community colleges, colleges, and universi-
ties (see CBMS, 2013 and Chap. 2 in this volume), and this is likely to be true at 
universities across the world as more courses require basic statistical reasoning and 
as statistical literacy skills become increasingly important in a technological, data- 
driven, global economy. Those teaching these courses include graduate teaching 
assistants teaching statistics for the first time as well as part-time and full-time fac-
ulty. They may have a profound impact on undergraduate students’ learning in sta-
tistics. Moore (2005) suggested that in the United States, future statisticians may 
only become interested in statistics because they are required to take an introductory 
statistics course during their undergraduate career. If they have a good experience in 
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their first course, they may, as a result, change their studies to statistics. Moore 
argued that if these students enjoy their experience and get hooked on data analysis, 
they might choose to focus on a career in statistics or statistics education. This is 
unlikely to happen if these undergraduate students do not have knowledgeable and 
experienced teachers of statistics. Yet there is little research investigating statistics 
teachers at tertiary level. Like the majority of secondary mathematics teachers, 
many graduate students complete their bachelor’s degree in mathematics and may 
never have taken a statistics course before. They may be entering graduate statistics 
programs and taking their first statistics course while at the same time beginning 
their first teaching assignments in statistics. They may lack either the content knowl-
edge or the knowledge of teaching (or both) to be well prepared to teach these 
undergraduate courses (see Moore, 2005 and Chap. 10 in this volume). In one of the 
few studies investigating graduate teaching assistants, Noll (2011) found that many 
did not have foundational knowledge of sampling distributions. Given that graduate 
teaching assistants become our future community college and university faculty, it 
is imperative that more research is done to study their content knowledge and create 
professional development to develop that content knowledge.

In summary, much of the research in professional development reviewed for this 
chapter focused on statistical investigations, in some form or another, as an approach 
for building capacity in teachers’ statistical content knowledge. However, this 
approach has significant challenges in its transposition to classroom practice. The 
research revealed that many teachers focus on procedural features of investigations 
or get stuck in problem formulation and data collection phases. While teachers do 
tend to improve their content knowledge from these classes, it does not appear that 
the impact is significant enough for them to be able to model statistical investiga-
tions in a robust way in their classrooms. Many teachers do not have an understand-
ing of underlying big ideas of statistics (Garfield & Ben-Zvi, 2008) or a strong sense 
of the statistical process. As a consequence, the central or marginal role that statisti-
cal investigations may have in classrooms is still an open question. Statistical inves-
tigations have a great promise but also present recognized challenges. To value the 
integrity of the statistics investigation process is an important aim but perhaps one 
that is not possible to fulfill in many cases given the external constraints.

Even when the conditions are favorable, there remain questions as to whether 
investigations are the most efficient way to teach all statistics processes and ideas. 
For example, statistical investigations take a significant time to implement in teacher 
education programs (as well as in classrooms), and therefore the time that can be 
devoted to developing a deep and connected understanding of the ideas of formulat-
ing important research questions, designing appropriate data collection methods, 
learning robust data analysis approaches, and devoting time to the important work 
of interpreting results is limited. For example, in Dolor and Noll’s (2015) study on 
reinventing a big statistical idea of hypothesis testing, considerable time was spent 
to get teachers to the point of reinventing one type of hypothesis test, and there was 
no evidence that the teachers could then translate these ideas to other hypothesis 
tests or have a deeper understanding of the process of statistical inference. At some 
point the research community needs to address the issue of limited time in 
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 professional development, and whether or not lessons learned from research in 
statistical investigations in professional development can be developed more quickly 
and deeply or scaled up to address the multitude of statistical ideas teachers need to 
better understand.

14.4  Approaches to Building Capacity through Developing 
Teachers’ Content and Technological Knowledge

Today the practice of statistics is inconceivable without the use of technology. Apart 
from making the simplest graphs and representations, all work with authentic statis-
tics presupposes the use of technology (Ben-Zvi, 2000; Biehler, Ben-Zvi, Bakker, & 
Makar, 2013; Chance, Ben-Zvi, Garfield, & Medina, 2007). Statisticians, statistics 
educators (e.g., Gould, 2010; Lee & Hollebrands, 2008a, 2008b; Madden, 2011), 
and national organizations (e.g., National Council of Teachers of Mathematics 
(NCTM), 2000; American Statistical Association (ASA), 2016; Franklin et  al., 
2005) argue that technology can and should be used in the teaching and learning of 
statistics for middle, secondary, and university students. However, many teachers of 
statistics are likely to have limited experience of working with educational tech-
nologies designed for the statistics classroom. Even those teachers who have experi-
ence using statistical software packages have probably used technology in 
rudimentary ways, such as to do computations more quickly, rather than using tech-
nology in more dynamic ways, such as learning how to construct different visual 
representations of data through the dragging and dropping of attributes on the 
screen.

Dynamic technologies such as TinkerPlots (Konold & Miller, 2011) or Fathom 
(Finzer, 2012) are not software packages that would typically be found in middle, 
secondary, and tertiary schools; yet these technologies have been recommended as 
important to support students’ development of key statistical ideas (e.g., Biehler 
et al., 2013; Lee & Hollebrands, 2008a, 2008b; Lee & Nickell, 2014; Lee et al., 
2014; Madden, 2011). We have already articulated how research suggests that 
teachers are likely to teach what they know and what they are comfortable with 
(e.g., Lee & Hollebrands, 2011, 2008a, 2008b; Pratt et al., 2011). Thus, in order to 
build capacity in statistics teacher education, we need to understand how profes-
sional development that integrates technologies might have an impact on what 
teachers do in the classroom. This section investigates these issues.

Much of the professional development research has focused on teachers’ statisti-
cal content knowledge. However, there is a smaller body of research studying the 
impact of integrating technology into professional development courses. Madden 
(2011) suggested that TinkerPlots (Konold & Miller, 2011) could be used for com-
paring variability in distributions of data to create “technologically provocative 
tasks” for teachers, that is, tasks that create epistemological obstacles or intellectual 
conflicts for teachers to support their development of new statistical ideas. Madden 
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(2014) provided examples of tasks that appeared to support both pre- and in-service 
secondary teachers’ development of technological pedagogical statistical knowl-
edge (TPSK, see Chap. 10 in this volume). Madden focused on an intentional 
sequencing of the environment, moving from the physical environment to the com-
puter environment as well as technologically provocative tasks, to create an envi-
ronment where teachers experience cognitive conflict but at the same time feel 
comfortable to take intellectual risks.

In another study, focused on the big statistical idea of variability, Browning et al. 
(2014) investigated prospective elementary teachers in a course that used TinkerPlots 
and strove to follow the GAISE report recommendations (Franklin et al., 2005). The 
authors suggested that the technology provided prospective teachers with a “con-
ceptual way of appropriately attending to measures of variability” (p. 1). They con-
jectured that this would translate into them being better able to support students’ 
development of concepts of variability in the classroom and to use technology to 
support that development.

McClain (2008) developed an instructional sequence to tie together middle 
school statistics curricula more coherently under the premise that the integration of 
computer tools is a critical component. The middle school teachers had computer 
tools that allowed them to manipulate, order, partition, and organize data. Tasks 
began with assessing teachers’ understanding of different types of graphs and how 
to make arguments from graphical displays. As the sequence progressed, the tasks 
demanded more nuance from the participants. Several of the tasks required compar-
ing two distributions of data. The intention was to create distributions that would 
problematize the comparison of means. Teacher talk shifted from a focus on the 
procedures of measures of central tendency to conversations grounded in the data 
and a consideration of context. McClain argued that such interventions may improve 
middle school teachers’ statistical understanding of significant ideas as well as 
building an instructional agenda supporting the development of significant statistics 
ideas in their students.

Meletiou-Mavrotheris et  al. (2009) investigated ways to support elementary 
school in-service teachers in Cyprus to implement technology in their classrooms. 
They identified factors that hindered teachers from implementing technology: lack 
of specific instructions for integrating technology into the teaching process and cur-
riculum, lack of recommendations for what software to use, and a shortage of com-
puters or suitable software. The authors designed a professional development 
curriculum that integrated TinkerPlots with core curricular ideas and data-centered 
activities using contexts familiar to children. Their work was geared toward sup-
porting teachers’ opportunities to model and investigate these data-centered activi-
ties with technology with the hope that this would promote their ability to enact 
similar work within their classrooms. The activities included tasks for teachers to 
solve with and without TinkerPlots. For example, teachers were given a data chart 
on life expectancies for women and men in several European countries. They were 
asked to compare life expectancies first without technology and then with 
TinkerPlots. They observed that without technology, the teachers primarily focused 
on numeric strategies for solving problems. When using TinkerPlots on the same 
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problem, they went beyond the bounds of what they were asked to do and considered 
multiple lenses for viewing the data. This finding that using technology helped sup-
port the teachers to view a problem in new and more robust ways supports the find-
ings of McClain (2008). Meletiou-Mavrotheris et al. (2009) also observed that the 
teachers personally liked using the technology because they suggested it would give 
them a chance to bring current data into their classroom (e.g., importing internet 
data into TinkerPlots) rather than using outdated data available in textbooks.

Lee and Hollebrands (2008b) state that “whether technology will enhance or 
hinder student learning depends on teachers’ decisions when using technology tools 
that are often based on knowledge gained during teacher preparation programs” 
(p. 326). Their research focused on the use of simulation, dynamic technologies, 
and data analysis in an integrated way. The materials were designed to support 
teachers’ development of big statistical ideas and understanding of how statistics 
and technology can serve as a tool for answering questions connected to data where 
deterministic statements cannot be made. Similarly, Lee and Nickell’s (2014) 
research focused on middle and secondary preservice teachers and was driven by 
the following research questions: “How do teachers use dynamic software tools to 
engage in statistical ideas and how may their work be preparing them for pedagogi-
cal decisions when teaching students statistics in their future classroom?” (p. 1). A 
significant finding from their research is that after such a course, focused on using 
dynamic technologies to teach statistics, the teachers may still not be ready to use 
dynamic aspects of the technology in their teaching. They noted that many teachers 
used technology to automate computations and the creation of graphs but tended to 
produce graphs they were already familiar with and did not always experiment with 
the rich variety of data representations that were available to them with the technol-
ogy. This also made it challenging for them to learn new things about their data.

Lee et al. (2014) studied prospective and in-service elementary, middle, and sec-
ondary school teachers and found a similar result. They observed that many of the 
teachers in their study appeared to have routinized their work and suggested that this 
“may indicate that the development of their statistical knowledge and technological 
statistical knowledge is not moving beyond viewing the tool as a way to automate 
the creation of graphs and computations and engaged in basic types of transnumera-
tion activities” (p. 19). These findings stand in contrast to those described earlier 
(Madden, 2014; McClain, 2008; Meletiou-Mavrotheris et al., 2009).

Wassong and Biehler (2014) implemented a 1-year professional development 
course in Germany for experienced secondary mathematics teachers who are also 
responsible for mentoring other teachers in their country. The first 4 months of the 
course focused on having teachers investigate big ideas of statistics (as other profes-
sional development focused on content has done) while integrating technology into 
those investigations. Wassong and Biehler found that the teachers had very little 
prior experiences with technology. The software appeared to help their learning of 
statistical concepts as well as how to explain statistical ideas. Podworny and Biehler 
(2014) also did research in a professional development course focused on prospec-
tive secondary teachers taking a basic statistics course for their degree program. 
They used a statistical investigations approach with TinkerPlots. Their work focused 
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on the topic of simulations and hypothesis testing. They found that about half of the 
preservice teachers preferred to use the simulation scheme during their work in 
TinkerPlots as a support for retrospectively documenting what they did during their 
simulation. However, most of the preservice teachers did not want to use a simula-
tion scheme for planning out their hypothesis testing approach.

Pratt et al. (2011) suggested three major challenges relating to the integration of 
technology: (1) teachers’ lack of comfort with, or knowledge of, the technology; (2) 
priority of technology at teacher, school, and assessment levels; and (3) teachers 
poorly implementing technology in the classroom. Much of the professional devel-
opment research summarized in this section addressed the first challenge. It pro-
vides examples about how to potentially increase teacher knowledge on the use of 
digital technologies for doing statistics. Some studies (Browning et  al., 2014; 
Madden, 2011, 2014; McClain, 2008; Meletiou-Mavrotheris et  al., 2009) noted 
positive outcomes in teachers’ abilities to learn new statistical ideas via the technol-
ogy; however, a couple studies (Lee & Nickell, 2014; Lee et al., 2014) noted that 
after concluding the professional development courses, teachers still tended to use 
the technology in routinized ways (ones they were used to and comfortable with) 
rather than alternative approaches that might be better suited to the data at hand. 
Thus, the statistics education community still needs to address how to improve 
teachers’ knowledge of dynamic statistical software packages. In addition, Wassong 
and Biehler (2014) questioned how many technologies can we expect teachers to 
learn and at what level of depth. This is a pertinent question that the statistics educa-
tion community needs to address especially given the lack of time in most profes-
sional development courses.

The other two challenges raised by Pratt et al. (2011), priority of technology and 
teachers poorly implementing technology, have received little attention from the 
research. There needs to be further research in the professional development of 
teachers of statistics that focuses on the priority placed on technology by teachers, 
schools, and assessment materials as well as research that focuses on how teachers’ 
actually implement technology into the statistics curriculum. Wassong and Biehler 
(2014) suggested one issue related to poor implementation: when symbolic repre-
sentations in digital formats differ from those presented in textbooks, teachers may 
struggle with their own content knowledge as well as how to effectively work 
around those issues within their classrooms. Poor implementation of technology is 
not a focus of research in part because most focuses on preservice teachers’ content 
knowledge and misses an opportunity to integrate issues of content (as well as con-
tent learned with technology) with the practice of teaching. We need more research 
that integrates all three components—content, technology, and practice—so that 
teachers have experience bringing statistical investigations using software to frui-
tion in their own classrooms. Effective implementation of technology in the schools 
depends on teachers’ beliefs about the role of technology in statistics. The statistics 
education community needs to build studies that focus on ways to build teacher 
beliefs and teacher practices, spending more time examining the work teachers do 
with statistical software packages in the classroom. In particular, design studies 
(e.g., Kelly, Lesh, & Baek, 2008) that examine teacher practice before and after 
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professional development are badly needed. Limited resources at schools may also 
limit the ability to implement technology into statistics courses. The statistics edu-
cation community will need to address ways to make important technologies for 
investigating statistics more broadly available.

14.5  Approaches to Building Capacity 
through Simultaneously Developing Teachers’  
Practice and Content Knowledge

This section focuses on professional development research that emphasized the 
integration of practice and content knowledge. Professional development focused 
on content knowledge has tended to have a unifying theme of statistical investiga-
tion or big ideas of statistics. In our review, professional development projects 
focused on practice also had a common theme of engaging teachers in inquiry in 
their own classrooms, placing the teacher as researcher (or action research, Mertler, 
2016). Researchers have suggested that professional development is more effective 
when it occurs within the context of teachers work in the classroom (Meletiou- 
Mavrotheris & Serradó-Bayés, 2012; Ponte, 2011).

Lesson studies were a key feature of several of the professional development 
studies reviewed and are one way of asking teachers to engage in structured inquiry 
into their classroom lessons (Garfield, delMas, & Chance, 2005, 2007; Roback, 
Chance, Legler, & Moore, 2006). A lesson study broadly involves three major steps 
(Murata, 2011): (1) identifying a topic of common interest to the teachers and plan-
ning of a lesson around topic, (2) the observation of the lesson taught by one of the 
teachers of the group, and (3) reflection and follow-up. Lesson plans attempt to 
consider not only the curriculum and resources available but also the current 
research on student learning of the topic. Observations focus on how students solve 
the tasks proposed. Reflections include all teachers analyzing what happened in 
class, focusing on what students are doing and experiencing. Analysis may lead to 
the reformulation of the lesson, changing the strategy, the materials, the tasks, or the 
questions posed to the students. The teaching cycle may be repeated several times 
(Murata, 2011).

The work of Garfield et al. (2005, 2007) was conducted at the university level 
where the teachers were two experienced faculty members, a teacher, and four grad-
uate teaching assistants. In a research by Roback et al. (2006), lesson study was 
used in an advanced statistics course addressing the concept of sampling distribu-
tion in the context of goodness-of-fit tests. Both groups of researchers reported that 
lesson study was very useful for better understanding student thinking and learning, 
promoting better collaboration among students (both in large and small group set-
tings), better collaboration among teachers, and improved lessons because of the 
benefits of multiple perspectives.
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Leavy (2010) used lesson study as part of a professional development course for 
prospective primary teachers. Lesson study was used as a way for the teachers to 
learn content while informing practice via the planning of lessons and the imple-
mentation of those lessons in their classrooms with their students. Leavy (2010) 
concluded that the participants demonstrated proficiency in informal inferential rea-
soning (content knowledge) but had difficulties developing pedagogical contexts to 
promote such reasoning in primary school students. Overall, lesson study was 
regarded as a useful form of classroom-based inquiry and focusing on lessons as the 
unit of analysis advanced the participants’ development of statistical and pedagogi-
cal knowledge.

A benefit to lesson study is that it provides teachers with a collaborative experi-
ence with an intensive focus on teaching a particular topic. Participants have a 
unique opportunity to observe lessons and collaborate with other teachers of statis-
tics as well as having teacher educator mentors to reflect on the outcomes of a les-
son. While this type of collaborative effort by teachers is common in Japan, it is 
unusual to find this type of collaboration in many other countries. A major challenge 
of lesson study is that it is very time-consuming both as an approach to teaching and 
to teacher education (Garfield et al., 2005, 2007).

An approach with similar features to lesson study is that of Teacher Professional 
Development Cycle (TPDC) developed by Souza, Lopes, and Pfannkuch (2015). 
This model built on Ponte’s (2011) work and was developed out of a concern to cre-
ate professional development that improves teachers’ specialized content knowl-
edge, pedagogical content knowledge, and professional knowledge. Souza et  al. 
(2015) created a five-phase model: orientation, exploration, application, analysis, 
and reflection. Like lesson study, the orientation phase focuses on teachers identify-
ing problems in their practice that they wish to pursue. In the exploration phase, 
teachers investigate relevant research and plan a lesson around the identified prob-
lems. Teachers also plan how they will collect data about their lessons for the reflec-
tion phase. In the analysis and reflection stage, teachers use formative assessment 
and conduct a self-assessment and an analysis of their students’ thinking. As with 
lesson study, this work is collaborative in that teachers work together through the 
cycles supported by a facilitator who acts as a partner. The researchers implemented 
their approach with middle school teachers and reported case studies on two teach-
ers. They suggest that these teachers improved their statistics knowledge and 
changed their approach to teaching statistics. In addition, they developed their abil-
ity to plan a lesson and to work collaboratively with other teachers.

Ponte’s (2012) national professional development program for elementary and 
secondary in-service teachers was rooted in practice to help prepare teachers to 
teach using a new curriculum for basic education introduced in Portugal in 2007. An 
important theme in the new curriculum was data handling. The professional devel-
opment program was organized in 25 h of face-to-face sessions and an additional 
25 h of independent work. There were five main program themes: (1) orientation 
toward practice through familiarizing teachers with the new curriculum, (2) focus 
on students’ learning through the creation and implementation of lesson plans 
aligned with the goals of the new curriculum, (3) collaboration, (4) practitioner 
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research through collection of action research data in teachers’ classrooms, and (5) 
change of professional culture through collaboration, discussions, and reflections 
about the lessons they taught. Overall, this professional development was situated in 
teachers’ own practice because they carried out a lesson in their classes, collected 
data from their classrooms, and analyzed this data. The hope was that the focus 
would support teachers’ capacity to teach statistics with the new curriculum, and the 
resulting work showed some success. Teachers were proud of the activities they cre-
ated, and there was much support for the new curriculum.

There are also a few studies that have been attempting to integrate practice and 
content knowledge in both preservice and in-service statistics teacher education 
through video case analysis or case analysis (Groth & Xu, 2011; Lee & Hollebrands, 
2008a, 2008b). For example, Groth and Xu (2011) illustrated two situations, one 
referring to a case discussion among a group of prospective secondary mathematics 
teachers in the United States and the other concerning a teaching research activity 
involving a group of in-service junior high school teachers in China. In case analy-
ses, educators use a teacher’s (hypothetical or real) lesson plan, class activity, stu-
dent work, and teacher reflections as the basis for professional development work 
(and, when available, video of classroom activity or students working on problems). 
Groth and Xu (2011) indicated that the discussions that ensue in this type of profes-
sional development environment can help improve teachers’ content knowledge as 
they consider the statistics in the class activities, the examples of students’ work, 
and the teachers’ reflections/notes. This type of professional development environ-
ment can also improve teachers’ content-specific pedagogical knowledge and gen-
eral pedagogical knowledge as they reflect on and discuss aspects of students’ work 
and the teacher’s decisions in the classroom.

14.6  Approaches to Building Capacity through Developing 
Teachers’ Practice, Content Knowledge, 
and Technological Knowledge

A relatively small number of studies have attempted to integrate teachers’ practice, 
content knowledge, and technological content knowledge into professional devel-
opment courses. Henriques and Ponte (2014) suggested that in addition to a focus 
on specialized content knowledge for teaching statistics, such professional develop-
ment must also integrate other recommendations made for introductory statistics 
classrooms, such as using exploratory data analysis (EDA) and new digital tech-
nologies. They suggest that, beyond robust statistical content knowledge, in-depth 
understanding of how students develop statistical ideas and how to use technology 
tools in productive ways that support students’ statistical development, statistics 
teachers need to hold productive beliefs and conceptions about statistics.

Their research studied the implementation of professional development grounded 
in a social theory of learning that focuses on building on the experiences of 
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 participating teachers over a period of 6 months. The teacher educators focused on 
three primary goals: (1) building an awareness of the importance of statistical rea-
soning, (2) presenting recommendations and guidelines for what to include in intro-
ductory statistics courses, and (3) ways to develop ideas suggested in guidelines and 
opportunities to plan and conduct lessons using TinkerPlots and to select instruc-
tional activities that support student learning. In this way, the professional develop-
ment focused on teacher knowledge development related to activities that build 
knowledge through an examination of teacher practice. Henriques and Ponte (2014) 
suggest that this type of professional development is an effective way to support 
teachers, giving them a “better appreciation of what teaching statistics is” and help-
ing teachers align their classrooms to current curriculum standards (p. 5).

Meletiou-Mavrotheris and her colleagues developed a professional development 
course that also integrated practice and content with technology (Meletiou- 
Mavrotheris, Mavrotheris, & Paparistodemou, 2011; Meletiou-Mavrotheris & 
Serradó-Bayés, 2012). The course was organized around the statistical problem- 
solving process and sought to involve teachers in reflecting on and discussing the 
different stages of this process and the related specialized content knowledge. 
According to the authors, the EarlyStatistics course “aims at helping teachers 
improve their pedagogical and content knowledge of statistics through exposure to 
web-based educational tools and resources, and cross-cultural exchange of experi-
ences and ideas” (p. 3). The course was developed in 13 weeks and included seven 
modules. The first 6–7 weeks focused on statistical investigations using TinkerPlots. 
In the second 6–7  weeks, the professional development focused on classroom 
implementation issues, as teachers adapt and develop the material provided and use 
it in their practice with the support of the facilitators. This professional development 
also uses video case analysis to discuss issues of content and practice. The course 
concluded with teachers reporting their experiences and collective discussion and 
reflection.

Lee and Hollebrands (2008a, 2008b)) integrated practice, content, and technol-
ogy through video case analysis of students in a classroom working on statistical 
investigations using TinkerPlots. Teachers in the professional development had to 
focus on student work with the aim that teacher discussions around student work 
using TinkerPlots would support their development of statistical content, statistical 
pedagogical content, and statistical technological pedagogical content knowledge.

Another approach that connects practice, content, and technology is that of Kuzle 
and Biehler (2015) that aimed to prepare 12 experienced mathematics teachers to 
become teacher educators (“mentor teachers”). These teachers participated in a 
5-month continuous professional development course in which a major feature was 
the development and implementation of a short professional development activity 
lasting for one afternoon. The aim of this course was to further the participants’ 
professional knowledge of teaching statistics using digital tools and to develop their 
knowledge and competences for designing and implementing their own profes-
sional development courses in statistics. The course included three components: (1) 
knowledge for teaching statistics, (2) knowledge for designing effective  professional 
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development activities, and (3) knowledge about models of teachers’ professional 
knowledge for teaching statistics with digital tools.

The professional development research described in this section focused on prac-
tice, content knowledge, and technological content knowledge and appeared to 
show much success in supporting teachers to improve their practice in the class-
room. Practice, content knowledge, and technological content knowledge are key 
areas for building capacity in statistics teacher education. Thus, professional devel-
opment that can implement all three key aspects is particularly salient since we 
know that teachers are likely to teach what they have experienced.

14.7  Looking Ahead

The professional development of teachers of statistics is incredibly an important 
work with which the statistics education community needs to engage. Teachers’ 
content knowledge, as well as what they do in classrooms, impacts on student learn-
ing. In this chapter, we have synthesized how the statistics education community 
has been attending to issues in professional development. In particular, our review 
of the literature revealed that more of the research has focused on preservice teach-
ers’ content knowledge (see Chap. 10 in this volume). The strengths we found in 
these studies include grounding research in national guidelines such as GAISE 
reports, focusing on statistical investigations or big ideas of statistics, and utilizing 
dynamic educational software such as Fathom or TinkerPlots. Some of the chal-
lenges these studies revealed include the need for more time than typical university 
coursework provides to make substantial improvements (which go beyond improv-
ing procedural knowledge) in content knowledge and knowledge of statistical soft-
ware packages. Future research needs to focus on how to more efficiently improve 
statistical content knowledge and knowledge of statistical software packages.

Somewhat less prominent, but still quite prevalent in the literature, was research 
focused on in-service teachers’ practice and content knowledge. Much of this 
research was also carried out through university courses where teachers began 
working through statistical investigations, focusing on content knowledge, and then 
later the course beginning a focus on how to bring statistical investigations into their 
own classrooms. Teachers worked either independently or in groups with other 
teachers to develop lesson plans, try lessons out in their classrooms, reflect on their 
lessons, discuss outcomes with peers and educators, and sometimes go through 
another round of lessons after revisions to the original lesson were made. These 
professional development courses tended to focus on content and practice by inte-
grating statistical content knowledge gained at the beginning of the course with 
practice in which teachers act as researchers by implementing statistical investiga-
tions into their own classrooms. Rather than approach the work of teachers from a 
theoretical perspective within the classroom, the emphasis appears to be moving 
toward grounding professional development in the practice of teaching, that is, 
using activities that teachers are likely to use in their classrooms, stimulating 
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 discussion around student artifacts, focusing on student centered routines for 
classroom activities, and, in some cases, situating professional development in the 
practice of teaching through classroom-based action research.

A few studies, most notably Henriques and Ponte (2014), Lee and Hollebrands 
(2008a, 2008b), Meletiou-Mavrotheris et al. (2011), and Meletiou-Mavrotheris and 
Serradó-Bayés (2012), integrated statistical investigations, statistical software tech-
nology, and practice. The use of video analysis by Lee and Hollebrands (2008a, 
2008b) represents a novel approach in our field for bringing aspects of practice into 
preservice professional development. We need to see more of this work. In general, 
any work that brings the focus on student thinking during statistical investigations 
and has teachers examining student work has the potential to both develop teachers’ 
content knowledge and help prepare teachers for the work of responding to student 
work. There needs to be more research into the professional development of teach-
ers of statistics that integrates all three aspects (content, technology, and practice). 
If we expect teachers to competently teach statistical investigations, the big ideas of 
statistics, and how to use statistical software appropriately, then we must engage 
them in this work in their professional development. The same is true with respect 
to practice: teachers cannot be expected to successfully implement robust statistical 
investigations using technology into their classrooms without disciplined efforts to 
focus on their practice and particularly on students’ activity in the classroom. 
Including practice into professional development is key if we want to develop teach-
ers who will critically examine and reflect upon the impact of their lessons on their 
students’ learning. In addition, statistics educators need to study further the impact 
of national and state curriculums on the work teachers do in the classroom and try 
to find ways to generate conversation that bring statistical investigation, technology, 
and practice in mandated curricula to classrooms.

Given the challenges that lie ahead in building capacity in statistics teacher edu-
cation, we also need to consider alternative approaches that were not prevalent or in 
absent from the research we reviewed. We argue that professional development for 
preservice teachers cannot just be restricted to content or content integrated with 
technology if we are to best prepare our future teachers of statistics. We also suggest 
that statistics teacher educators build collaborations with schools so that their pre-
service teachers have more opportunities: spending time in actual classrooms 
observing students’ working on statistical investigations, reflecting on student work 
in the classroom, and having introductory experiences creating and implementing 
lessons prior to their first assignments. Co-teaching or mentoring may be ways to 
bring practice into the education of future teachers of statistics, for example, 
research that explores co-teaching where a preservice and in-service teacher work 
together, as in the innovative approach to lesson study described by Cajkler and 
Wood (2016a, 2016b). While this type of mentoring occurs in student teaching 
activities, it does not appear to be well researched and does not always appear to be 
integrated with a particular content course. We need content courses where preser-
vice teachers act as an apprentice and in-service teachers as mentors. The experi-
ence may in fact be a mutually supportive relationship if pre- and in-service teachers 
have an opportunity to explore statistical investigations together and then to explore 
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ways to bring those investigations into their classrooms. The act of co-preparing 
lessons, enacting lessons, reflecting on class sessions, and grading and assessing 
student work provide opportunities to discuss content, students’ statistical reason-
ing, and practice.

While the quality of undergraduate instruction has not always been a priority for 
colleges and universities, particularly research institutions, we are now at a point in 
time when colleges and universities are being held more accountable for the quality 
of undergraduate education. Statistics educators need to do more to engage in col-
laborations with statisticians to build momentum for improving teaching and learn-
ing of introductory statistics at the college level. We need to study graduate students, 
part-time faculty, and professors to better understand issues related to content 
knowledge and practice in these groups. At community colleges in the United 
States, we find instructors with master’s degrees in mathematics teaching introduc-
tory statistics having never taken any statistics as part of their coursework. Thus, the 
statistics education community must work to make inroads with these varied com-
munities and instructors with varied backgrounds. Models of professional develop-
ment for primary through secondary school contain aspects that could be applied to 
professional development of teachers of statistics in higher education. Professional 
development using lesson study, co-teaching, mentoring, or video case studies are 
models that could be used with teachers of statistics in higher education. There is 
currently little research investigating the practice of teachers of statistics in higher 
education. Some educators have informally shared what they do to prepare graduate 
students to teach introductory statistics. For example, Garfield and Everson (2009) 
described their professional development for teachers of statistics using the GAISE 
report as a guiding framework. This course served not only graduate teaching assis-
tants but also those who will go on to teach high school statistics. Their work focuses 
on specific issues in the teaching of introductory statistics and is geared to build 
future instructors’ content knowledge as well as specific pedagogical knowledge, 
through understanding students’ misconceptions and research-based study of stu-
dents’ statistical development. However, faculty at community colleges and univer-
sities are completely missing from the professional development literature. Without 
collaborations with statisticians, this group is likely to continue to remain missing 
because there is no mandated professional development. Statisticians and statistics 
educators need to develop guidelines for the practice of teaching undergraduate 
statistics courses.
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Abstract In the second set of reflective writings (the first set appears in Chap. 13), 
another group of prominent statisticians and statistics educators considers the 
impact of recent and future developments on both the statistics curriculum and the 
ways in which it is taught and learned. The two connecting themes in this group of 
writings are the ubiquitous use of technology and the uses of data in decision mak-
ing. All of these writings acknowledge, to a greater or lesser extent, the differing 
future needs of two groups. As citizens, today’s students need to be educated to be 
critical consumers of data but do not need detailed knowledge of statistical tech-
niques. The much smaller group who will go on to be professionally engaged in the 
production and analysis of data also need the ability to engage with more technical 
details. A challenge for statistics education, particularly at school level, is to provide 
a learning environment which is appropriate for both of these needs, since we do not 
know the future trajectories of our students.
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15.1  Introduction

In the second set of reflective writings (the first set appears in Chap. 13), another 
group of statisticians and statistics educators considers the impact of recent and 
future developments on both the statistics curriculum and the ways in which it is 
taught and learned. The two connecting themes in this group of writings are the 
ubiquitous use of technology and the uses of data in decision making.

Chris Wild (Sect. 15.2) envisages developments in technology which allow all 
students access to “broad vistas” of how data can be used to investigate real-world 
problems and support curiosity. James Baglin (Sect. 15.3) focuses attention on the 
need for students to learn technological skills as consumers and producers of data, 
while Amelia McNamara (Sect. 15.4) discusses the current “gap” between accessi-
ble technologies designed to support the learning of statistics and the more powerful 
ones used by statisticians to engage in analysis. Jim Ridgway (Sect. 15.5) also high-
lights the need to educate citizens in the critical use of data but takes a different 
perspective describing a project in which relatively novice school students explore 
issues relevant to their own lives using data in the public domain. Kevin McConway 
(Sect. 15.6) provides a further perspective on the uses of data in the social and politi-
cal domain by considering the statistics education of journalists.

All of these writings acknowledge, to a greater or lesser extent, the differing 
future needs of two groups. As citizens, today’s students need to be educated to be 
critical consumers of data but do not need detailed knowledge of statistical tech-
niques. The much smaller group who will go on to be professionally engaged in the 
production and analysis of data also need the ability to engage with more technical 
details. A challenge for statistics education, particularly at school level, is to provide 
a learning environment which is appropriate for both of these needs, since we do not 
know the future trajectories of our students. The final chapter of this section (Chap. 
16), which follows this group of writings, discusses pedagogic approaches to meet-
ing this challenge.

15.2  Lucid Dreams About the Future

Christopher J. Wild
University of Auckland
AucklandNew Zealand
c.wild@auckland.ac.nz
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I have a dream of a multitude of students spellbound by the broad vistas of the data 
landscape. I have a dream of their flying on magic carpets that enable them to swoop 
effortlessly over this landscape exploring its nooks and crannies in search of its hid-
den treasures. I have a dream of students empowered to look at data and explore 
analysis systems and educational environments designed so that, like Alice in 
Wonderland, they keep crying “Curiouser and curiouser!” and have the ability and 
confidence to go where that curiosity leads. I have a dream of educational and anal-
ysis environments designed to leverage the power of “I wonder …?” to draw stu-
dents into learning more and more—the power of “I wonder why …?,” the power of 
“I wonder what happens if …?,” the power of “I wonder what that does?,” and the 
power of “I wonder what’s around the next bend or just over the horizon?” I have a 
dream of software that finesses away the mundane, the mind-numbing, and the soul- 
destroying difficulties. I have a dream of software that creates rich, virtual data- 
generating environments that mimic real real-world environments well enough to 
enable realistic experiential learning in accelerated time frames. I have a dream. But 
this is not drug-induced fantasy. We are already building systems that are converg-
ing on this Utopian dreamscape.

Complementing the dreams are realizations. We are all well aware that the accel-
erating onslaught of technology is having profound effects on our everyday and 
workaday lives. But in statistics education, the most profound effect of technology 
is its affect on what is actually worth learning and by whom. Ours is a fast-changing 
world of ever-expanding possibilities, where the limits of what machines can do 
expand inexorably, leaving us ever freer to concentrate on the thinking that is neces-
sarily human. Increasingly, everything that is purely procedural in statistics will be 
automated in software (a process that will be accelerated by the large numbers of 
computer scientists in “data science,” their every sinew and fiber commanding, 
“Automate!”). Investigators and data analysts won’t need to know the details any 
more than they now know the details of what is happening under the hoods of their 
cars. Teaching procedural details, i.e., having students learn to operate particular 
algorithms (or particular software menus), is teaching short-term, death-dated skills 
leaving them with little of long-term value. We need to start operating at much 
higher and more conceptual levels because only the big picture concepts, the funda-
mental principles and questions, are of real enduring value.

We should be educating large numbers of students (I would argue virtually all 
students) to think with data and have some facility with conducting and critiquing 
real-world investigations and much smaller numbers of people who can develop 
new methodologies and turn them into new tools. For the larger group, we need to 
get them fast to broad vistas and the big issues to create a sense of possibility and 
potential for their lives—to open eyes, quicken hearts, liberate the imagination, and 
empower—then temper this with proper caution. All of this should be facilitated by 
the best tools available. If struggling to get the right stuff into and out of software 
chews up an appreciable proportion of these students’ time, then it’s the wrong 
software.

To moderate some of the statements above, “short term” is not entirely a nega-
tive. Short-term skills can be crucial for that imminent dissertation or that first job. 
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Additionally, I am not claiming that learning to operate an algorithm (follow 
instructions) is not a useful skill. It is a very useful skill, but not for operating the 
algorithms you have been trained on, but for operating new algorithms in the time 
before they become shrink-wrapped in software. The same applies to learning how 
to write computer programs (e.g., for data wrangling). Today’s complex program-
ming task is tomorrow’s mouse-click. These skills deliver their value when they 
have been mastered to a level where they allow you to do new things that others 
have not already catered for—bridging the gap between the available and a desired 
“something more.”

I think the key to “experience a lot quickly” is software and educational experi-
ences developed in tandem. The software is designed to make possible capabilities 
that are educationally desirable. The educational experiences exploit the doors 
opened by the software. Comprehensive systems are much more desirable than sets 
of one-off applets. While the latter can be fine for illustrating particular points, they 
do not foster the forming of broad understandings facilitated by unifying frame-
works. Additionally, every time someone reaches for a new system, there is the time 
sink of figuring out how the new system “thinks.” Besides wasting precious time, 
this can trigger a “too hard” response that inhibits getting started.

We need to distinguish between software that accelerates the speed with which 
learners can discover new landscapes and is good for occasional users to dip in and 
out of and software that professionals will immerse themselves in. The former will 
tend to prioritize areas where the inputs and outputs can be easily understood and 
not worry about comprehensive coverage, whereas the latter must provide almost 
everything a professional could want. This inevitably adds to the complexity in 
human-software interactions and steeper learning curves. Software to accelerate 
breadth of data-world awareness and empower occasional users, on the other hand, 
should minimize how many names you have to know before you can get value out 
of the software and should maximize how far default settings can take you (memo-
ries of the what and how of doing things dim surprisingly quickly when not con-
stantly refreshed by regular use).

I have experimented with these ideas in building the iNZight system for data 
visualization and analysis (www.stat.auckland.ac.nz/~wild/iNZight/) and VIT 
(Visual Inference Tools, www.stat.auckland.ac.nz/~wild/VIT/), a visualization sys-
tem for developing inferential concepts. iNZight is heavily used in New Zealand 
schools, particularly the last 3 years of high school, but has capabilities covering 
much of undergraduate statistics. The free online MOOC “Data to Insight” (www.
stat.auckland.ac.nz/~wild/d2i/4StatEducators/) was produced to prototype a getting- 
further- faster introductory statistics course leveraging the capabilities for accelera-
tion provided by iNZight and VIT. At one level, iNZight and VIT are prototypes to 
be learned from when building better getting-further-faster software for the future. 
But at another, they are also very good systems for teaching and data exploration 
right here, right now. Although they do not quite usher in the opening dreamscape, 
they come close enough to show that there is huge potential here and that this is 
something that is almost within our grasp.
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15.2.1  How Can and Should Research Relate to All of This?

The data world is expanding fast but the extent of what we convey has changed very 
little. If our breadth of view does not start to keep pace with the expansion of the 
data world, our educational offerings will illuminate an ever-shrinking segment of 
reality converging to irrelevance, and we will (deservedly) fade into oblivion. To 
chart our way into that future, we need seers and dreamers, we need entrepreneurs 
and innovators, we need architects and builders, and we badly need research and 
researchers.

We need our researchers to take on problems that are bigger and more fundamen-
tal but messier and less well understood. Even just crystallizing key research ques-
tions constitutes making research contributions of fundamental value. I conclude 
with a list of some research challenges.

15.2.2  Future-Facing Areas in Need of Substantial Research

• Where is statistics now? What new fields are opening up?
• Of the potential new areas, which are most worth pursuing and why? What is 

essential versus what is peripheral and why? What don’t we need to teach any-
more and why?

• Who are the clients for this educational offering (including future employers)? 
What do they need? What skillsets are required for that? Where in the program 
should we address that?

• What can machines do and what of statistical thinking is essentially human?
• What difficulties can we circumvent with new technology?

15.3  Teaching Statistics Technology

James Baglin
RMIT University
Melbourne, VIC, Australia
james.baglin@rmit.edu.au

Technology is used in all aspects of preparing, collecting, manipulating, analyzing, 
summarizing, and visualizing today’s large, complex, “big data.” It has enabled the 
growth and development of many computationally intensive methods including 
bootstrapping, permutation methods, ensemble methods, and Markov chain Monte 
Carlo methods for Bayesian methods, to name a few (see Chap. 13 for more on 
Bayesian methods). Gould (2010) was correct in concluding that statistics and tech-
nology have become inseparable. This raises an important question for statistics 
educators: “How do we teach statistics technology?”
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Technology for doing statistics fits within the broader domain of statistical 
computing. Important topics in this area include, but are not limited to, knowing 
how to use general and statistical programming languages, access databases, manip-
ulate data, use visualization tools, scrape unstructured data from the web, and con-
duct simulations (Nolan & Temple Lang, 2010a, 2010b). These topics are most 
relevant to statistics students and are becoming increasingly important to those 
studying statistics as part of their disciplines. However, at the very least, an intro-
ductory statistics student should be familiar with using a common statistical pack-
age such as SPSS, SAS, or R. The technology required by the modern statistics 
student is diverse, and this will likely evolve continually in years to come. The key 
will not be to teach a specific software or programming language but to develop the 
ability of students to become lifelong learners of statistics technology.

How to foster the development of this capability in our students remains a press-
ing challenge. Limited research has explored the development of technological 
skills in statistics—or so-called technology for “doing” statistics (Baglin & Da 
Costa, 2013a). The research that does exist looks closely at comparing strategies 
used to develop statistical package skills in introductory courses (Baglin & Da 
Costa, 2012, 2013b, 2014). Collectively, this research shows that conceptual under-
standing and experience using the technology are key ingredients for success. 
However, statistical package skills are just one example of technology used in mod-
ern statistical practice. This must expand to technologies used at all stages of the 
data investigation process including planning, collecting data, and communicating 
findings (e.g., visualizations). With this in mind, it was hopeful to have found many 
examples in the literature of statistics educators creating innovative approaches to 
better integrate technological skill development into their courses.

In a paper by Hardin et al. (2014), the authors report numerous strategies for 
teaching data science topics within the statistics curriculum, namely, the incorpora-
tion of technology-rich data science electives. Hardin et al. (2014) argue that statis-
tics technology is best taught in the context of solving real-world problems as 
students can see the relevancy and opportunities afforded by technology. Horton, 
Baumer, and Wickham (2014) discuss strategies for exposing students to precursor 
data science technology in introductory statistics courses including the use of R for 
computation (R Core Team, 2014), R Markdown for reproducible analysis (Allaire 
et al., 2015; Baumer, Çetinkaya-Rundel, Bray, Loi, & Horton, 2014), and R pack-
ages for SQL interrogation of databases. Gould and Çetinkaya-Rundel’s (2014) 
innovative “DataFest” has also shed light on important conceptual and technologi-
cal skill gaps in statistics education. This 2-day, extracurricular competition pits 
undergraduate student teams against each other in providing insight into real, large, 
and complex data. Gould and Çetinkaya-Rundel identified key weaknesses in stu-
dents’ ability to generate their own investigations into the data, decide on appropri-
ate units and scales for particular variables, apply multivariate statistical techniques, 
create visualizations of multivariate data, and analyze spatial and temporal data and 
general programming in R. Clearly, a modern statistics student needs to be both 
conceptually and technologically proficient.
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Technology may also rapidly change the concepts covered by the introductory 
curriculum. Perhaps a shift toward accessible forms of statistical inference (Wild, 
Pfannkuch, Regan, & Horton, 2011) and a resampling-based curriculum (Cobb, 
2007) that emphasizes the core logic of inference might achieve technological syn-
ergies and a “smarter,” more efficient curriculum. Students could be moved further 
and faster through the current core curriculum and quicker into meaningful, real- 
world practice. Time could be better spent on building students’ capacity to mean-
ingfully engage in real statistical data investigations, performing statistical 
computing, and working with “big data.” This will require a heavy dose of 
technology.

There are many implications to an increased emphasis on teaching technology 
within the statistics curriculum. Many challenges must be overcome including 
addressing poor teacher preparation to use technology (Hassad, 2013; Nolan & 
Temple Lang, 2010a), an already crowded curriculum facing possible disruption 
(Nolan & Temple Lang, 2010a), and pedagogical concerns about trade-offs between 
conceptual understandings (Chance, Ben-Zvi, Garfield, & Medina, 2007). These are 
legitimate concerns that cannot be brushed aside.

The field of statistics education needs to better understand the relationships 
between technological skills and statistical knowledge. Are these distinct domains 
or are these two areas inseparable? A better understanding of the technological 
skills required to be a successful consumer and producer of statistics, today and into 
the future, would help shape new and informed curriculum patterns. Statistics edu-
cators must look within (Nolan & Temple Lang, 2010a) and outside the field to initi-
ate a coordinated, multidisciplinary, and international effort to teach statistics 
technology. Patterns of technological skill incorporation and assessment used within 
statistics education need careful evaluative research in order to ensure students are 
graduating with the right skills, dispositions, and critical mind-sets to be effective 
users and producers of statistics technology. This also raises new assessment chal-
lenges, because as Gould (2010) reminds us, “We can no longer be complacent and 
assume students will ‘pick-up’ the skills they need to negotiate complex data” 
(p. 309).

15.4  Considering the Gap Between Learning  
and Doing Statistics

Amelia McNamara
Smith College
Northampton, MA, USA
amelia.a.mcnamara@gmail.com

Most introductory statistics courses now incorporate technology in one way or another. 
This is a boon to statistics, as true makers of statistical products must use computers. 
However, there is a distinction between using technology as an instructional aid and 
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fully integrating computation into the curriculum (Biehler, Ben-Zvi, Bakker, & Makar, 
2013). Some courses use tools for learning statistics and some tools for doing statis-
tics. Often, this means the difference between students as “creators” of computational 
statistical work (as discussed by Baglin in this chapter) and as proficient “users” of the 
technology is not fully engaged in the practice of statistics.

Tools for learning statistics include applets and MicroWorlds—software designed 
for the purpose of illustrating a statistical concept. Some good examples of applets 
include those created by Rossman and Chance (Chance & Rossman 2006) and the 
StatKey applets (Morgan, Lock, Lock, Lock, & Lock, 2014). Students play with 
applets but cannot modify them beyond the possibilities written in by the author. 
TinkerPlots and Fathom (Konold & Miller, 2005; Finzer, 2002) provide a landscape- 
type paradigm (to use a term from Bakker, 2002), but are still designed only for 
beginners and have limited functionality.

Tools for doing statistics are more powerful and flexible products like R, Python, 
SAS, and Stata. These tools can be extended (particularly the open-source R and 
Python) and used to solve a broad range of data problems but are difficult for nov-
ices to grasp, particularly when they are also trying to learn statistical concepts.

Tools for learning statistics usually present easy entry for students and tools for 
doing statistics provide a high ceiling, allowing more flexibility. However, tools that 
are good for an introductory learner are generally not good for performing real data 
analysis, and vice versa.

Novices who begin with a tool designed for learning—whether it is an applet or 
a full software package—must engage in the cognitive task of learning the interface. 
Creating statistical products, either in higher-level coursework, research, or in the 
corporate world, requires more complex tools, so learners are forced to learn yet 
another interface. Researchers have not studied this progression in the context of 
statistics, so there is little scaffolding to make the transition easier.

Alternatively, novices can immediately start with a tool for doing statistics. This 
allows them to skip the effort of learning an introductory tool but still incurs the 
high start-up costs of learning the technology. Whether beginning with a profes-
sional tool immediately or transitioning later, the threshold for entry on professional 
tools can be so high as to make users believe they are not capable of learning it.

It does not have to be this way. As a community, we should consider the learning- 
to- doing trajectory and develop new ways to support it, by creating new tools and 
curriculum.

Curricular resources should make explicit reference to the prior tool and couch 
tasks in terminology from the first system to make transitions easier. Technology 
should strive to bridge from a supportive environment for learning to an expressive 
tool for doing. Providing “ramping up” as users reach the end of the abilities of the 
learning tool and “ramping down” as they start with the tool for doing could make 
the gap less abrupt.

Since Biehler (1997), researchers have considered what makes an effective tool 
for teaching statistics (e.g., Ben-Zvi, 2000). In particular, the development of 
Fathom and TinkerPlots must be commended. Similarly, statistical practitioners are 
constantly improving the tools used to create true statistical products. For example, 
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Hadley Wickham works tirelessly to produce R packages (ggplot2, dplyr, tidyr) to 
help practitioners more easily and flexibly produce data analyses (Wickham, 2014).

However, these developments have taken place largely in silos. Where research 
has crossed over, it has typically been in the context of stripping down professional 
tools to allow novices to use them. In particular, Project MOSAIC defined a unified 
R syntax and a limited set of commands to be used in introductory statistics (Horton, 
Baumer, & Wickham, 2014). This effort, however, considers R as the end goal for 
students and goes against Konold’s philosophy that tools for learning statistics 
should be developed from the bottom up, thinking about what features novices need 
to build their understandings (Konold, 2007).

Tools for teaching and doing statistics should aim for the same goals, albeit from 
different directions. They should strive to provide easy entry for new users while 
still allowing the flexibility to build extensions onto the system, support a cycle of 
exploratory and confirmatory analysis, promote interactivity, and make it simple to 
publish and reproduce analysis. (See McNamara 2015 for further analysis.)

It is time for the research to cross over and for us to think about bridging the gap 
between students learning statistics and students producing statistical analysis. By devel-
oping tools and curriculum to help novices build their understanding from the ground up, 
we may end up finding better ways for everyone to perform statistical analysis.

15.5  Statistics Education and Empowerment

Jim Ridgway
School of Education
Durham University
DurhamUKjim.ridgway@durham.ac.uk

Statistics emerged as a discipline because people needed tools to improve decision 
making. Our early history encompasses luminaries such as Nightingale and Fisher, 
both inventing methods to address practical problems—Nightingale in particular 
invented tools to change long-ingrained medical practices. The rhetoric of a “useful 
discipline” persists—the Royal Statistical Society in the UK uses the slogan “data, 
evidence, decisions.” The front page of the International Statistical Institute website 
is headed Statistical Science for a Better World. Effective decision making depends 
on key statistical ideas such as measurement (including ideas of data provenance 
and data quality), estimation, probability, utility, expected value, risk, and (of 
course) different models for decision making. In many countries, the curriculum is 
dominated by technical mastery of techniques invented in the 1930s to solve a par-
ticular, small class of problems—in particular, problems where it is plausible to 
generalize results from small samples to populations and where rather little data are 
available to inform some simple decision (e.g., is this crop variety better than that 
one, in these sorts of conditions?) (Batanero, Burrill, Reading, & Rossman, 2011). 
Technical mastery of statistical technique is a small part of the decision-making 
process but is often the focus of both teaching and assessment.
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Open data presents more immediate and profound opportunities for curriculum 
change. There has been a sea change in the ways that evidence is used as a warrant 
for decision making in the public domain. Open data have profound implications for 
policy decisions and for the ways that policy is conducted and communicated. 
Dramatic examples are provided by the 2015 UK national elections, where the 
claims of politicians about the implications of their proposals (usually in terms of 
cost) were critiqued by many groups and where real-time fact checking of speeches 
and debates has become a fact of political life.

Open data have some obvious properties that can be contrasted with data typi-
cally used in school classrooms. Data sets are large, so computing power is essen-
tial, and almost any comparison between groups will result in a conclusion that 
differences are “statistically reliable.” Hypothesis testing and the determination of p 
values can be set in context as a useful starting point if you are working with modest 
data sets and small effect sizes. Statistics that are important for decision making, 
such as bounded estimates of effect sizes, can be taught immediately.

Evidence used in argumentation in the media is often multivariate and assembled 
from different sources. In our studies (e.g., Nicholson, Ridgway, & McCusker, 
2011, 2013; Ridgway & Nicholson, 2010; Ridgway, Nicholson, & McCusker, 
2007), young, statistically naïve students do not have problems understanding non-
linearity, interaction, and “third variable” confounding—and, indeed, invent and 
articulate these ideas for themselves, given interesting data sets to explore (such as 
data about young people and sex, alcohol, drugs, and rioting). Curriculum practices 
that build up from basics, and focus on statistical techniques, alienate students for a 
variety of reasons. It is easy for teachers to say that the subject matter is difficult (it 
is); more fundamentally, the models implicit in simple linear models of social phe-
nomena are inappropriate, so students see that learning statistics is just a hoop to 
jump through in order to survive the education process.

When asked to reason with open data related to social issues, students can see 
that what they are learning can be empowering. The open data movement has been 
very successful in getting governments and nongovernmental agencies to allow 
access to data; however, permission to use data does not mean that representative 
citizens can actually access and use it. Access may require database skills; it is 
highly likely to require spreadsheet skills and certainly skills in understanding 
metadata, as well as the skills required to work with tabular data. At school level, 
students’ first experiences should be via rich visualizations of multivariate data on 
topics they are interested in. At undergraduate level, it is easy to make a case for 
incorporating data mining, statistical learning, and R and Python into curricula.

A far larger group of people are in urgent need of statistics education, namely, 
citizens. Data is increasingly being used as evidence in policy making and public 
debate. How can statistics educators make a difference? My view is that more 
researchers need to get their hands dirty, by working alongside opinion formers and 
analysts. Researchers can contribute insights on how to improve comprehension; 
practitioners can get educators’ voices heard and can facilitate public access to new 
data sources relevant to statistics education. Understanding and influencing the use 
of evidence in the public domain is the new research horizon. Here is an example.
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PARLER is a collaboration between groups at Durham University and the House 
of Commons Library. The Library is the first port of call for UK politicians who 
want information about anything—for policy, for an upcoming speech, or to answer 
a question from a voter. We have created the Constituency Explorer Kit (http://
www.constituencyexplorer.org.uk), a collection of linked tools designed to encour-
age and support exploration of evidence relevant to national elections. In the UK, 
people are elected from constituencies (geographical areas) to the House of 
Commons. One component of the Kit is a quiz customized for every constituency 
that runs on mobile devices; another component is an interactive display which 
allows users to plot the locus of every constituency on any one of 150 variables; a 
third component is a visualization that documents changes that arose as the result of 
the election (again, users can relate changes to a very large number of variables). 
Display design reflects some important principles from statistics education: 
Variables can be rescaled, but every time the user chooses a new variable, the scale 
reverts to 0–100. Display features are explained; variable names are linked to meta-
data descriptions; data can be downloaded, but metadata must be downloaded, too.

The Library is influential; they work directly with politicians, and their publica-
tions, blogs, and press releases are widely used. The Constituency Kit has had a far 
higher level of exposure that is common in much academic work in statistics educa-
tion. A major ambition for the collaboration is to create a demand for high-quality 
data visualizations of key data sources from politicians, journalists, and data suppli-
ers themselves. In this case, an extensive data set relevant to a common theme has 
been assembled from multiple sources and is universally accessible.

I think that the most important challenge for statistics education is to understand 
and influence the uses of evidence in decision making. This needs to be an active 
process—you don’t understand a complex system until you try to change it (being 
bitten by “unknown unknowns” is an important part of learning). Collaborations are 
essential; working with groups who must be seen to be politically neutral has great 
advantages. It will not be a research area that can be mapped out much in advance; 
the systems being researched are changing, and the researchers are part change 
agents and part careful observers and analysts. Results will feed forward into the 
actions of organizations that provide data and backward to the statistics curricula 
that limp along behind.

15.6  Statistics in Journalism: The Present and Possible 
Futures

Kevin McConway
School of Mathematics and Statistics
The Open University
Milton KeynesUK
kevin.mcconway@open.ac.uk
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The fact that statistics plays a role in journalism is hardly news. Even before there 
was something called data journalism, there were plenty of data in the media. 
Newspapers were, and are, full of statistical information and of stories based on 
data—think of the business pages, the sports pages, and even, on the front page, 
stories based on economic indicators, or health scares based on epidemiological 
analysis, or body counts from the latest disaster or war.

But what has changed is the variety of ways in which data are used and pre-
sented. Nowadays, for instance, there is something called data journalism—indeed 
there are more and more distinctions and variations including data-driven journal-
ism and database journalism. Definitions are fluid, but the basic idea is that method-
ologies and ways of thinking from other fields that use data are adapted and extended 
to further the journalist’s aim of informing the public.

So journalists might dig through official statistics to find where hospitals are 
performing badly. Nothing new about the press pointing out that a hospital harmed 
a patient, but in the past the story would have been about an individual, based per-
haps on a court case, rather than on a comprehensive statistical picture. Or it would 
be based on an official inquiry report where someone else found the data and drew 
the conclusions.

And, going back a couple of decades, the story would have been in print or on the 
television, not in an interactive web page that allows the user to look up the exact 
detail that they are interested in. Some such pages are linked to a more traditional 
publication such as a newspaper or TV station, but many others are not.

These examples are qualitatively different from “old-style” journalistic outputs 
and could not exist without the availability of the public data behind them. (Indeed, 
data journalists have been among the leading advocates within the open data move-
ment.) But even traditional print and broadcast media have changed. There were 
always a few graphs in the business pages or in articles about the economy, but these 
days you can scarcely open a newspaper without being confronted with an info-
graphic, usually based on information that is at least partly statistical. Some of these 
graphics are informative; others seem to be there almost entirely to make the news-
paper page look better.

How, then, are all these changes reflected in the training of journalists in statisti-
cal matters and the use of data? In the past, the training that a typical journalist had 
in this area was rudimentary. The journalist Peter Wilby wrote, “Journalists are not 
very good with figures. The great majority come from an arts or social studies back-
ground. […] Most journalism training courses do not have modules on how to han-
dle numbers. Literacy is considered essential for reporters—or at least their 
subeditors—but not numeracy” (Wilby, 2007).

Things have changed since then, but on the whole not much. For instance, the 
UK’s National Council for the Training of Journalists does now require numeracy 
skill development in the courses it accredits, but this is recent, and the level of skills 
required is not high.

It is possible to write an acceptable, or even excellent, news story based on analy-
sis of data without having more than a basic level of these skills, provided one relies 
on someone else’s analysis. Those providing data to journalists often provide such 
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an analysis. In releasing data, government statisticians generally go much further 
than providing the raw numbers, by presenting them in an analytic report, complete 
with an executive summary and helpful (to journalists anyway) press releases. A 
health story based on epidemiological data usually gets into the media because the 
academic journal, or the university involved, writes a press release, and though jour-
nalists would be given access to the paper in the journal, what appears in the news 
often resembles the press release very closely.

The problem with this journalistic approach to data is that the journalists may not 
have the skills to ask the right critical questions of the data producers (to say nothing 
of the fact that they may also not have the time, given editorial demands such as 
tight deadlines). A 2014 study of science news (Sumner et  al., 2014) found that 
press releases frequently exaggerated the findings of the studies they were supposed 
to be summarizing, and when they did, news reports tended to cover the story in the 
same exaggerated manner. This failure to be able to question seems to me to be 
more prevalent and on the whole more important than simple failings of numeracy.

There have always been journalists in specialist areas who have much stronger 
numeracy and statistical skills, and these are now joined by data journalism experts 
who, between them, possess (and need to possess) the range of skills needed in that 
other loosely defined rising field, data science. Besides statistical skills, they need to 
have relevant advanced computing skills (including database and Web skills), exper-
tise in design and graphics, as well as the traditional journalistic abilities like recog-
nizing a good story, asking awkward questions, and writing well and persuasively. 
Training and reference materials specifically for data journalism do already exist—
some universities run courses, and there are more widely available sources, such as 
the online Data Journalism Handbook (Gray, Chambers, & Bounegru, 2012) and an 
introductory MOOC (Massive Open Online Course) run by the European Journalism 
Centre (2014).

What are the implications for statistics education? A risk is that statistics educa-
tors are seen, by journalists, to be irrelevant in this context. It would probably be 
feasible for the required training of journalists, at all levels, to come from the jour-
nalism community. The number of statistically competent journalists may be rela-
tively small at present, but it is not zero and could expand. No, the risk is to the 
statistics education community, who has important things to learn from the journal-
ists. Statistics educators are engaging with journalism educators (see, e.g., 
McConway, 2015), but this needs to happen more. Statisticians must learn more and 
more broadly about how and why other professional groups produce and use statis-
tics. We statisticians can’t know, and certainly can’t control, everything that others 
get up to with data.

In particular, we must not assume that what we teach about statistics to, say, 
scientists and social scientists can easily be transferred to teaching journalists. The 
context is very different. For instance, the European Journalism Centre MOOC 
(2014) covered the use of Excel spreadsheets to find story ideas. The technical 
aspects of using Excel were much the same as one might teach in an introductory 
statistics course for business students. But the instructor pointed out that the news 
story from a set of data would generally lie in its extreme values, because they are 
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potentially more newsworthy than averages. A statistician would not usually start 
there. Journalists do still need to know about averages and typical values, but for 
different reasons.

Journalists are also, typically, under time pressure much more severe than is the 
case for statisticians and the scientists we often teach. That has implications for 
what is possible and for how analysis tools must develop—and the implications 
arguably go beyond journalistic contexts into others where one is data rich but time 
poor. Journalists need, in most cases, to be good at statistical thinking, not at statisti-
cal calculation or at using statistical software. There are parallels with the statistical 
aspects of teaching of critical appraisal of the literature that medical students (and 
others) learn, but the details are different and the applicability of the approach is 
broader.

Finally, a journalist cannot survive without knowing how to tell stories well. The 
storytelling aspect of statistical analysis and reporting has received attention in the 
statistics education literature, but we can learn more from journalists on this aspect 
than they can learn from us.

Statisticians are already involved in training journalists. Let’s continue and 
broaden this engagement. Let’s be sure to put ourselves in a position where journal-
ists and statisticians can learn effectively from each other.
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16.1  Introduction

Many of the research studies in the learning and teaching of statistics (reviewed by 
Garfield & Ben-Zvi, 2007; see also chapters in part II of this handbook) suggest 
innovative approaches that differ from the traditional classroom practices through 
which most current statistics teachers learned this subject themselves. However, 
innovation which addresses only one aspect of the pedagogical context, for exam-
ple, introducing technological tools in teaching when assessment practices remain 
unchanged, is likely to have only limited impact. This chapter offers starting points 
of theory and design for deep learning (Sawyer, 2014) of statistics to develop stu-
dents’ statistical reasoning. To do this, we use a learning environment perspective to 
provide a dynamic, holistic, integrated, and multidimensional framework for sus-
tainable educational change in statistics.

The goal of this chapter is to draw attention to the need to think about learning 
environments and their design as a way of considering how sustainable change in 
the learning and teaching of statistics can be supported. We provide several exam-
ples of learning environments that operationalize and integrate various design per-
spectives (e.g., Hickey, Kindfield, Horwitz, & Christie, 2003) and are informed by 
various theoretical frameworks (social constructivist theory of learning and realistic 
mathematics education theory). We discuss these examples in a critical way by 
comparing and evaluating their designs, looking for common threads among them. 
We emphasize that the goal of this chapter is not to advocate one particular approach 
to the design of learning environments, but rather to raise awareness of the need to 
consider this lens in statistics education.

A learning environment perspective can guide statistics educators and research-
ers to view, design, and assess statistics teaching and learning in designed settings, 
such as classrooms and online courses, as a holistic entity. It can support the inten-
tional transformation of an educational setting based upon conjectures about how 
the integration of features of the designed setting will support the learning of statis-
tics. Such an entity is a complex and dynamic educational system, composed of 
multiple factors: key statistical ideas and competencies (content), engaging tasks, 
real or realistic data sets, technological tools, classroom culture including modes of 
discourse and argumentation among students and between students and teachers, 
norms and emotional aspects of engagement, and assessment methods. Integrating 
all these factors in order to reform the way statistics is learnt and taught is a chal-
lenging endeavor. In addition, the broader community (school-level policy makers, 
local and national authorities, etc.) plays a significant role in the constitution of the 
learning environment. For example, tensions may arise between required traditional 
examinations and alternative assessment methods employed in a learning environ-
ment or between national curricula and an emergent and dynamic learning trajec-
tory in the learning environment.

New developments in mathematics, statistics, and science education, and more 
generally in the learning sciences, provide important ideas and practical implica-
tions about the design of learning environments (e.g., Bielaczyc, 2006; Collins, 
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1999; De Corte, Verschaffel, Entwistle, & van Merrienboer, 2003; Vosniadou, 
Ioannides, Dimitrakopoulou, & Papademetriou, 2001; Vosniadou & Vamvakoussi, 
2006). These developments highlight the value of rethinking what is taught, how it 
is taught, and how it is assessed (e.g., Bransford, Brown, & Cocking, 2000). The 
focus in this chapter is on general characteristics of statistics learning environments 
that need to be examined and integrated in light of these new developments. Our 
specific objectives are to first present the rationale for the importance of a focus on 
learning environments for statistics education; we provide a potential framework for 
considering aspects of statistics learning environments building on social construc-
tivist background theory and the domain-specific theory of realistic mathematics 
education (RME). We then present three examples of statistics learning environ-
ments used in diverse contexts (primary school, lower secondary school, and ter-
tiary education) and develop from them six design considerations for statistics 
learning environments. Finally we discuss implications and emerging directions and 
goals for further implementation and research.

16.2  Learning Environments

Reform in statistics education is required and has been sought and evaluated in 
recent decades (see Chap. 2 of this volume; Cobb, 1992, 1993; Everson, Zieffler, & 
Garfield, 2008; Garfield, Hogg, Schau, & Whittinghill, 2002; Moore, 1998; Reston 
& Bersales, 2008). The core idea that underpins this reform is that learning statistics 
is not about passively acquiring a set of facts and procedures but rather about 
actively constructing meanings and understandings of big ideas, ways of reasoning, 
and articulating arguments, dispositions, and perspectives. Unidimensional changes, 
such as the redesign of particular tasks or aspects of the curriculum, are not suffi-
cient to make extended and sustainable change (e.g., Cuban, 2003; Darling- 
Hammond, 1997; Kohn, 1999). We recognize that even comprehensive efforts to 
change several aspects of teaching and learning statistics are not necessarily a key 
to success (Savelsbergh et al., 2016).

The research literature in statistics education is filled with success stories, which 
are of importance to the advancement of the field but have not had a major impact 
on the way statistics is taught in all levels of education. We propose that one of the 
reasons for this is the lack of a systematic, comprehensive, and integrated approach 
to design for educational change. We suggest that what is needed is change in a 
combination of interrelated dimensions (content, pedagogy, space, time, tasks, 
tools, assessment, classroom culture, etc.) that can bring about significant and sus-
tainable reform in the teaching and learning of statistics by providing a coherent 
framework in which each dimension operates synergistically with others. Moore 
(1997) similarly urged a reform of statistics instruction and curriculum based on 
strong synergies between content, pedagogy, and technology. A learning environ-
ment perspective can provide such a framework. One of the major goals of statistics 
education is to educate critical, independent, and statistically literate learners who 
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are able to study topics of their own interest and become involved in data-based 
decisions. A learning environment perspective can provide fertile affordances to 
support learners’ growth and development in this direction.

Design dimensions of statistics learning environments that will be considered 
and discussed in this chapter are based on a number of principles arising from recent 
research. In particular, we have drawn on research concerning the importance of 
prior knowledge and preference for depth over breadth (Bransford et al., 2000), the 
creation of failure-safe learning communities in which students can learn from their 
successes and mistakes (Bielaczyc & Collins, 1999; Kapur & Bielaczyc, 2012), the 
nurture and articulation of learners’ diverse expertise, encouragement of reflection 
and feedback (Boud, Keogh, & Walker, 1985), formative assessment (Clark, 2012; 
Kingston & Nash, 2011), and enculturation into the statistics discipline (Edelson & 
Reiser, 2006).

Teacher education in statistics is not just about improving teachers’ subject 
knowledge but also about challenging their thinking about the whole process of 
statistical inquiry as central to statistical thinking and learning (see Chaps. 10 and 
14 of this volume; Pfannkuch & Ben-Zvi, 2011). A learning environment perspec-
tive can provide a guiding framework for teachers that can support their profes-
sional growth in statistics education.

While any setting in which learning takes place can be viewed from a learning 
environment perspective, we focus now on statistics teaching and learning that 
occur in the context of designed1 learning environments2 (mostly in classrooms and 
online settings, but sometimes also at home or in the workplace). The use of the 
metaphor of an environment emphasizes that classrooms are interacting social, cul-
tural, physical, psychological, and pedagogical systems rather than a collection of 
resources, tasks, and activities or a list of separate factors that influence learning. 
Because of the complex nature of learning environments, successful design requires 
a working model of how components of the design that help frame forms of student 
participation and responsibility are collectively constituted and orchestrated (Lehrer, 
2009).

To achieve this kind of balance and orchestration, we argue that learning environ-
ments must be designed on the basis of learning theories, which can guide the 
design, help choose between the options, and lead to better achievement of the peda-
gogical goals. In the next section, we describe two theoretical frameworks that have 
been commonly used to guide the construction of learning environments.

1 Learning occurs in a wide continuum of settings from the “designed” to the “ambient” (Kali, 
Tabak, Ben-Zvi, et al., 2015). On this continuum, this chapter focuses on designed learning envi-
ronments rather than informal and ambient ways of learning.
2 Others use the term learning ecology instead of learning environment to emphasize that the edu-
cational system is always dynamic and emerging rather than a static entity (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003; Lehrer & Pfaff, 2011).
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16.3  Theories that Can Guide the Design of Learning 
Environments

The roles of theory in design research and in design of learning environments are 
complex and dynamic (Jonassen & Land, 2012). These vary in levels of generality. 
From the most general level to the most specific, these include (1) orienting frame-
works or background theories; (2) domain-specific instruction theories as frame-
works for action; and (3) local instruction theories/humble theories/hypothetical 
learning trajectories (Prediger, Gravemeijer, & Confrey, 2015). Theories do not pro-
vide straightforward recipes for designing effective learning environments. 
However, they (1) provide a rationale and motivation to use a learning environment 
approach rather than merely focusing on content, tasks, or what the teachers are 
doing and (2) can provide considerations, guidelines, and constraints to the practical 
task of learning environment design (see more on the nature and use of theories in 
statistics education in Chap. 11 of this volume).

We take social constructivist theory, which is a well-accepted theory in the edu-
cation community, as our background theory on teaching and learning. This theory 
requires instructional designers to think through how students construct new knowl-
edge and how the classroom community might interactively constitute instructional 
tasks. In addition to this general educational theory, one needs a theory that is spe-
cific for mathematics education. For reasons we explain below, we choose RME as 
our domain-specific instruction theory.

16.3.1  Social Constructivist Theory

According to constructivist theory, people learn by actively constructing knowl-
edge, rather than by passively receiving knowledge: new knowledge and under-
standings are based on the existing knowledge and beliefs one already has and are 
grounded in our experiences, understandings, and cultural practices (e.g., Cobb, 
1994b; Piaget, 1978; Vygotsky, 1978). The thesis that students construct their own 
knowledge leads to the following questions (Cobb, 1994a): “What do we as educa-
tors/instructional designers want the students to construct?” or “What do we want 
mathematics/statistics to be for them?” and “How do we create a situation in which 
students construct what we want them to construct?”

When trying to answer the last question, a learning environment perspective sug-
gests that it is not sufficient to design instructional tasks or instructional activities; 
rather the whole learning environment needs to be considered. Drawing on social 
constructivism, we may argue that what counts in the learning environment are not 
just the tasks as such, but the tasks as they are interactively constituted in the class-
room. How the tasks are construed depends largely on the classroom social norms, 
the forms of interaction, and the pedagogical agenda of the teacher. Those in turn 
are closely related to the learning goals, including a wider goal for how the students 
understand the nature of statistics.
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From our perspective, prioritizing the investigative nature of statistics (see Chap. 
4 of this volume), the latter requires specific classroom social norms, expecting 
students to come up with their own questions and solutions and to explain and jus-
tify their thinking. Further, it requires appropriate socio-statistical norms or beliefs 
about what it means to do statistics, which concern ways of reasoning and articula-
tion, dispositions, and perspectives. Thus, a social constructivist belief that students 
construct their own knowledge and our beliefs about what statistics should entail for 
the students both create the need to think in terms of learning environments and 
define how we want to shape those environments. (See the Sect. 16.3.2 for an exam-
ple of a learning environment that uses these social constructivist theory tenets.)

Social constructivism further determines how one thinks about symbolic repre-
sentations. The key here is the distinction that can be made between inscriptions—
such as marks on paper—and what these inscriptions signify. From a social 
constructivist point of view, what inscriptions signify is determined by the social 
practice in which they are used. For example, circles on paper may signify count-
able objects for students who are participating in a counting activity, while similar 
circles may signify characters for students participating in a natural language les-
son. Thus, from social constructivist stance, establishing social practices in which 
such inscriptions are produced and used will be a central issue in the design of learn-
ing environments.

Several social constructivist theoretical frameworks have been developed to 
describe learning as active participation in a community. Communities of practice 
(Wenger, 1998), communities of learners (Rogoff, 1994), and knowledge-building 
communities (Scardamalia & Bereiter, 2014) are three frameworks that have had 
considerable influence on educational research and practice. Though they may have 
some nuanced distinctions, they share three fundamental tenets: activity, participa-
tion, and enculturation. The active nature of learning is embodied in students’ par-
ticipation in negotiating meanings, developing understanding, evaluating, and 
orchestrating their own learning in collaborative environments, all with the guid-
ance of an expert teacher (Barron et al., 1998; Ben-Zvi, 2007; Brown & Campione, 
1994; Sfard & Cobb, 2014). These forms of participation are, in turn, viewed as 
processes of enculturation: students assume increasingly central roles in the class-
room community and immerse themselves within a culture of learning through 
which they acquire competence in language, social practices, rituals, and values of 
the discipline (Barry, 2007). For the classroom community to function effectively, 
the students and the teacher must negotiate and agree upon standard values and 
norms that guide and constrain social behavior (Cialdini & Trost, 1998; Hod & Ben-
Zvi, 2015). The participation in a classroom community yields not only valued and 
shared products but contributes to the ongoing development and growth of all mem-
bers, as they take up and build on each other’s knowledge and actions (Rogoff, 
Turkanis, & Bartlett, 2001).

The implication of a social constructivist stance is that good pedagogical practice 
consists of designing learning environments that stimulate students to construct 
knowledge in learning communities. Statistical inquiry is one such approach that 
provides students with many opportunities to participate, think, reason, and reflect 
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on their learning, as well as to discuss and reflect with their peers. A social construc-
tivist perspective on inquiry does not mean that teachers should never tell students 
anything directly. Rather it means that learning is enhanced when teachers recog-
nize that “teacher telling” does not automatically result in “student knowing” and 
pay attention to ways in which learners construct knowledge. Monitoring students’ 
changing conceptions as instruction proceeds can provide insights as a starting 
point for new instruction.

Research does not provide a recipe for designing effective learning environ-
ments, but it does support the value of asking certain kind of questions about the 
design of learning environments and shows their value and success in certain con-
texts. We argue that the main reason to adopt a learning environment approach is 
that it appears to be more effective in helping students build a deeper understanding 
of statistics (e.g., Baeten, Kyndt, Struyven, & Dochy, 2010; Bransford et al., 2000; 
Cognition and Technology Group at Vanderbilt, 1998; Sawyer, 2014; Sfard & Cobb, 
2014).

16.3.2  Realistic Mathematics Education (RME) Theory

According to social constructivism, everybody constructs his or her own knowl-
edge. This puts teachers—and by extension instructional designers—in a difficult 
position. For how can you ensure that students construct what you want them to 
construct? Simon (1995) answered this question by proposing a hypothetical learn-
ing trajectory (HLT): try to anticipate the mental activities of the students when they 
engage in the instructional tasks under consideration, and relate those mental activi-
ties to the learning goal. By developing, enacting, analyzing, and revising HLTs, the 
teacher can guide the learning process of the students. Teachers can be supported in 
designing HLTs by being offered prototypical instructional sequences and the local 
instruction theories underpinning them. These can provide teachers with frame-
works of reference for deciding what mental activities to aim for and choosing 
instructional tasks that may foster these mental activities.

The domain-specific instruction theory for RME offers a theoretical basis for the 
design of such local instruction theories. The founding father of RME, Freudenthal 
(1973), argued that students should experience mathematics as a human activity, 
similar to the activity of mathematicians. While engaging in mathematical activity, 
they could reinvent mathematics (or statistics) with the help of teachers and tasks. 
In relation to this, he speaks of guided reinvention, which, we may argue, is compat-
ible with constructivism, as both Freudenthal and constructivists have in mind stu-
dents who construct their own mathematics. Over time, those starting points were 
elaborated in a domain-specific instruction theory, initially formulated by Treffers 
(1987) and later worked out in the form of instructional design heuristics by 
Gravemeijer (2004). Those instructional design heuristics encompass guided rein-
vention, didactical phenomenology, and emergent modeling.

The guided reinvention design heuristic asks the designer to develop a potential 
reinvention route, of which the starting point should be experientially real to the 
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students in that the students would know how to act and reason sensibly in those 
situations. Freudenthal (1973) pointed out that the designers could look at the his-
tory of mathematics/statistics as a source of inspiration (see, for instance, Bakker & 
Gravemeijer, 2006 who reviewed the historical phenomenology of mean and 
median). History could tell them which dead ends to avoid and how breakthroughs 
were achieved. Streefland (1991) added to this the idea of looking at students’ infor-
mal solution strategies. Students may invent informal solution strategies that show 
the germs of the applicable mathematics, which could be used as starting points for 
a reinvention process. Building on Treffers (1987) and van Hiele (1986), we may 
argue that the learning goals should be framed in terms of networks of mathematical 
relations. In relation to this, we introduce the notion of reification, in which pro-
cesses obtain an object-like character (Sfard & Linchevski, 1994). The conception 
of a distribution may, for instance, evolve from the process of organizing measure-
ments within a space of possible outcomes to conceptualizing a distribution as an 
object with certain characteristics such as shape, center, spread, and skewedness 
(Bakker & Gravemeijer, 2004).

The didactical phenomenology heuristic, also originated by Freudenthal (1983), 
argues that mathematical thought things such as concepts, rules, and procedures 
were invented to organize certain phenomena. As examples of a thought thing, we 
may think of the conception of “the mean,” summarizing a set of data in one num-
ber, or the conception of a distribution as a more sophisticated way of grasping a 
data set. The procedure of calculating the mean would offer an example of a proce-
dure type of thought thing. Designers are advised to investigate how the mathemati-
cal thought things they are aiming for organize phenomena in applied situations. 
According to Freudenthal (1983), they can then use that information to create situ-
ations in which the need arises to organize phenomena by the very thought things 
that are to be invented. Related to this, the advice is to explore the variety of situa-
tions in which the thought thing is applied in order to create a broad phenomeno-
logical base.

The emergent modeling design heuristic refers to the roles that models and mod-
eling can play in supporting the reinvention process. Of key importance here is the 
notion that symbolic representations do not come with an inherent meaning. In rela-
tion to this, Bereiter (1985) framed the learning paradox: to come to understand a 
new piece of mathematics, you have to understand the symbolic representations that 
derive their meaning from the very piece of mathematics you want to come to 
understand. The emergent modeling heuristic aims at circumventing this learning 
paradox by fostering a learning process in which symbolizations and meaning 
coevolve. Initially, the models come to the fore as context-specific models, referring 
to situations that are experientially real for the students. Initial models have to allow 
for informal solution strategies at the level of the contextual problem. Then, while 
the students gather more experience with similar problems, the teacher will support 
them in shifting their attention toward the mathematical relations and strategies. 
This will help them to further develop those mathematical relations, which enables 
them to see the model in a different light; the model starts to derive its meaning from 
the emerging network of mathematical relations and starts to become a base for 
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more formal mathematical reasoning. Thus, a model of informal mathematical 
activity develops into a model for more formal mathematical reasoning, together 
with the development of a network of mathematical relations, which the students 
may experience as an expansion of their mathematical reality.3

Taken together, social constructivism and RME can provide a conceptual founda-
tion to guide the design of learning environments. Although not the only relevant 
theories, they provide one example of how theory and practice are strongly linked 
and can enrich each other. We turn now to describe three examples of statistics learn-
ing environments which were designed based on one of these theories, each target-
ing a different age level: primary school, lower secondary school, and tertiary level.

16.4  Examples of Statistics Learning Environments

16.4.1  Example I: The Connections Learning Environment 
(Primary School)

The connections learning environment is built upon the principles of social con-
structivist theory (Sect. 16.3.1 above) and is designed for young learners (ages 
10–12). It is a design and research project which started in 2005 (Ben-Zvi, Gil, & 
Apel, 2007) to develop students’ statistical reasoning in an inquiry and technology- 
enhanced learning environment in primary schools in Israel.

The project extends for 5 weeks (6 h per week) each year in grades 4–6 during 
which students actively experience some of the processes involved in data-based 
inquiry, mirroring the practice of statistics experts. Students conduct data and statisti-
cal modeling investigations through peer collaboration and classroom discussions 
using TinkerPlots (version 2; Konold & Miller, 2011), a computer tool for dynamic 
data and modeling explorations. By playing a role in helping students learn new ways 
of representing data and develop statistical reasoning, TinkerPlots gradually becomes 
a thinking tool for these students; it scaffolds their ongoing negotiations with data, 
statistical ideas, inferences and their meanings (Ben-Zvi & Ben-Arush, 2014).

The tasks undertaken by connections students are a series of open-ended real 
data investigations that provide students with rich and motivating experiences in 
posing statistical questions; collecting, representing, analyzing, and modeling data; 
and formulating inferences in authentic contexts, which result in meaningful use of 
statistical concepts (Ben-Zvi, Aridor, Makar, & Bakker, 2012; Makar & Ben-Zvi, 
2011). The data are obtained from a questionnaire designed by the research team, 
teachers and students, and administered by students in their school. The connections 
classroom is conceptualized and organized as a learning community (Bielaczyc & 
Collins, 1999) that supports collaboration, argumentation, sharing, and reflection. 

3 In practice, “the model” in the emergent modeling heuristic is actually shaped as a series of con-
secutive sub-models that can be described as a cascade of inscriptions or a chain of signification.
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This is done physically in the class and virtually in a website that includes all edu-
cational materials and supports, students’ reflective diaries, and peer and teacher 
feedback.

Alternative methods of assessment (Garfield & Ben-Zvi, 2008, pp. 65-89) are 
used as an integral part of the connections learning environment. These assessment 
activities, including student projects, oral presentations, and peer and teacher feed-
back, are viewed as an important component of the learning processes rather than 
only as a means for “testing” of students’ outcomes. For teachers, they provide 
opportunities to gain insights into students’ developing constructions of meaning 
and so are a crucial part of the planning and design process. Students are usually 
highly motivated to present and discuss their work in short presentations during the 
project and at the statistical happening, a final festive event with their parents.

In the connections learning environment, rather than first teaching students 
directly about statistical concepts and then asking them to apply them in investiga-
tions, the investigations themselves are designed to raise the need to attend to these 
concepts, hence deepening students’ understanding of both their relevance and 
application. Additional strategies are used in the design of the educational materials 
such as growing samples (Bakker, 2004; Ben-Zvi, 2006; Konold & Pollatsek, 2002), 
which is a pedagogical heuristic in which students are gradually introduced to 
increasing sample sizes that are taken from the same population. For each sample, 
they are asked to make an informal inference (Chap. 8 of this volume) and then 
predict what would remain the same and what would change in the following larger 
sample. Thus, students are required to reason with stable features of distributions or 
variable processes and compare their hypotheses regarding larger samples with their 
observations in the data. They are also encouraged to think about how certain they 
are about their inferences. Beginning with small samples, students are expected to 
experience the limitations of what they can infer about this current sample. This is 
a useful pedagogical tool to sensitize and slowly introduce students to the decreas-
ing variability of apparent signals in samples of increasing sizes.

Ben-Zvi (2006) found that the growing sample heuristic combined with “what 
if” questions not only helped connections students make sense of the data at hand 
but also supported their informal inferential reasoning by observing aggregate fea-
tures of distributions, identifying signals out of noise, accounting for the constraints 
of their inferences, and providing persuasive data-based arguments. The growing 
awareness of students to uncertainty and variation in data enabled students to gain a 
sense of the middle ground of “knowing something” about the population with 
some level of uncertainty and helped them develop a language to talk about the gray 
areas of this middle ground (Makar, Bakker, & Ben-Zvi, 2011).

The growing sample heuristic does not stand alone but is part of the broader con-
nections learning environment. For example, the students have a deep grasp of the 
sample data since they have collected them, and the technological tool allows them 
to present the growing samples easily and creatively in a supportive classroom 
culture.

The connections project was based initially on an exploratory data analysis 
(EDA) pedagogic approach (Shaughnessy, Garfield, & Greer, 1996). Students drew 
informal inferences from real samples following the statistical inquiry cycle. To 
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foster students’ appreciation of the power of their inferences, a model-based per-
spective has recently been added in which students build a model (a probability 
distribution) for an explored (hypothetical) population and produce data of gener-
ated random samples from their model using TinkerPlots. By analyzing generated 
random samples and comparing them with the suggested model, students learn 
about the relationships between samples and populations as well as about sampling 
variability and representativeness (Manor & Ben-Zvi, 2017).

Connections students gain considerable fluency in techniques common in explor-
atory data analysis: the use of statistical concepts, statistical habits of mind, inquiry- 
based reasoning skills, norms and habits of inquiry, and TinkerPlots as a tool to 
extend their reasoning about data (e.g., Ben-Zvi et al., 2012; Gil & Ben-Zvi, 2011). 
In a longitudinal mixed method study (Gil & Ben-Zvi, 2014), evidence of long-term 
impact of teaching and learning was sought among ninth graders, 3 years after their 
participation in the 3-year connections intervention. Students from two groups, who 
had/had not taken part in the program, were compared throughout three extended 
open-ended data inquiry tasks and took a statistical reasoning test. Connections 
students had significant gains in terms of their conceptual understanding of aggre-
gate view of a distribution and informal statistical inference. They used statistical 
concepts in a more meaningful, integrated, and accurate manner in their explana-
tions, were more fluent considering the uncertainty involved in generalizations from 
random samples, and supported their inferences with data-based evidence.

In sum, connections students learn by actively constructing knowledge of key sta-
tistical ideas and competencies; enjoy open, extended, and engaging tasks; investigate 
real data sets with sophisticated technology; and are assessed with alternative methods. 
The combination of these activities and entities, coupled with supportive and caring 
classroom learning culture, creates a learning environment that nurtures students’ deep 
statistical learning (e.g., Aridor & Ben-Zvi, 2017; Manor & Ben- Zvi, 2017).

16.4.2  Example II: The Nashville Data Analysis Project 
(Lower Secondary School)

In the late 1990s, two extended data analysis teaching experiments were carried out 
in a 7th and an 8th grade classroom. These design experiments (Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003) were part of a 10-year collaboration of Cobb, 
Gravemeijer, Yackel, and others, in which RME theory was elaborated while adopt-
ing the collectivist perspective on teaching and learning that is implied by a social 
constructivist view (Cobb, Gravemeijer, & Yackel, 2011). Similar to Freudenthal’s 
(1973) adage of mathematics as an activity, the starting point for the design was 
that students would have to experience learning about data analysis by doing data 
analysis. This of course required a matching classroom culture in which the teacher 
and students could function as a community of practice/learning community. The 
structure of the lessons was tailored to this idea, which started with a whole-class 
discussion in which a problem or issue was explored, followed by small groups 
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solving the problem with the help of a computer tool, and concluded with presenta-
tions and discussions.

This approach was worked out in the following manner (see also Gravemeijer & 
Cobb, 2013). The tasks were designed on the basis that the students would be doing 
data analysis “for a reason”: to solve a problem or to answer question, preferably 
concerning a topic that the students considered relevant. To foster an effective rein-
vention process, a shift was made during the first teaching experiment from solving 
problems to considering and improving ways of data analysis and visualization, 
denoted as cultivating statistical interest. To achieve this, the students were given 
the role of data analysts working in the service of people who had to make deci-
sions. The tasks usually involved comparing two data sets. Faithful to the idea of 
data analyses for a reason, the students were involved in the process of data creation. 
However, as assembling data was not feasible in most cases, this took the shape of 
talking through the process of data creation. In this manner, the researchers also 
tried to ensure that the starting points would become experientially real for the 
students.

Following the emergent modeling design heuristic, the researchers tried to pro-
vide for a process in which the ways of symbolizing/visualizing and the develop-
ment of meaning coevolved. The backbone of the instructional sequence was formed 
by a series of visual representations that functioned as sub-models in an emergent 
modeling process (Fig. 16.1). We will briefly describe how this series of submodels 
evolves.

The starting point is the supposition that 7th grade students will be familiar with 
representing individual measurement values as lengths. When comparing data sets, 
the focus of the students will be on the end points of the individual value bars and 
the corresponding positions on the x-axis (Fig. 16.1a). So the bars can be left out, 
while the end points descend to the horizontal axis, resulting in a dot plot (Fig. 16.1b). 
Analyzing and comparing distributions represented by dot plots, students may start 
to reason about the shape of the distribution (Fig. 16.1b). In doing so, the vertical 
axis will come to signify the density of data points around a given x-value. While 
structuring data sets in various ways, structuring data in four equal groups may 
come to the fore as one of the powerful ways of structuring data (Fig. 16.1c, d). Here 
students may start using the partitioning in halves and quarters as means for com-
paring data sets while also starting to get a handle on distributions by realizing that 
the data density is the highest where the distance between the vertical bars is the 
smallest. Then the students may start to use four equal groups or boxplots as means 
to reason about distributions (Fig. 16.1e, f). Ideally the boxplots will come to sig-
nify the shape of the distribution for the students, thanks to the history of its emer-
gence. In the process, distributions are expected to acquire an object-like quality for 
the students, objects with characteristics such as shape, spread, and skewness—
which can be further defined with median, quartiles, and extreme values.

Building on this model, bivariate data sets may be sliced into a series of univari-
ate distributions that can be represented as a series of (vertical) boxplots. Thinking 
of hill-type shapes corresponding with these boxplots, a ridge can be imagined run-
ning across the data set. This ridge may be interpreted in terms of a conjectured 
relationship of covariation between the two variables involved.
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The visualizations are embedded in computer tools; and the computer tools, with 
the built-in tool options, were so designed that they would support the aforemen-
tioned reflexive process. The first tool shows data values as bars with a dot at the 
end. The students can structure data in various ways while comparing two or three 
data sets. The second tool shows data points in the form of dot plots, which can be 
structured in various ways, in particular in either two or four equal groups. The third 
tool shows bivariate data sets in a Cartesian graph and allows for slicing the data set 
vertically and structuring those slices in two or four equal groups.

There were several indicators that the students were in fact reinventing elemen-
tary statistics. At the end of the 7th grade, students used the tool options in original 
ways and invented idiosyncratic concepts such as “consistency” (small spread), 
“majority” (highest density), and a hill metaphor, which not just signified the visual 
shape for the students but also the way the data were distributed (Cobb, McClain, & 
Gravemeijer, 2003; Gravemeijer, 2002a, 2002b). They realized that a higher point 
on the hill corresponded with a higher density of data points.

At the end of the 7th grade teaching experiment, most students could readily 
interpret graphs of data sets in terms of characteristics of distributions while focus-
ing on informative ways of organizing data. A limitation, however, was that they did 
not see the median as a characteristic of the data set, probably due to the fact that the 
median and the quartiles were often used to partition the data sets in order to com-
pare them multiplicatively. However, the students did develop the notion of “hill” 
and “majority,” which later on (in the 8th grade) could be further developed into the 
interpretation of the median as indicator of the location of a hill.4

16.4.3  Example III: Statistical Reasoning Learning 
Environment (Tertiary Level)

Garfield and Ben-Zvi (2008, pp.  45-64; 2009) designed a learning environment 
model for an interactive, introductory secondary- or tertiary-level statistics course 
that is intended to develop students’ statistical reasoning. This model is called a 
“Statistical Reasoning Learning Environment” (SRLE) and is built on the social 
constructivist theory of learning (Sect. 16.3.1 above). The model is also recom-
mended for use in teacher education (Pfannkuch & Ben-Zvi, 2011).

The SRLE may be better understood through comparison with a “traditional” 
university class. In a “traditional” class, the students come to class with no anticipa-
tion of what they will learn, ready to copy down what the teacher has to say. The 
teacher presents a lecture that includes examples, some data analysis, and perhaps 
some demonstrations. The students listen, take notes, and perhaps ask questions. 
They leave the class with a homework assignment that uses information from the 
class they just attended. They go home and try to solve the problems by looking 

4 Note, however, that the students have to be made aware that not all distributions are unimodal.
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back at their notes or looking up worked examples in the textbook, often getting 
frustrated if they do not find an exact match.

In an SRLE class, the students know that they have to prepare for class by read-
ing a few pages in the textbook using study questions to guide their reading and note 
taking or by responding to a task, such as a data analysis task or an interview with a 
child. Students therefore come to class with a preliminary exposure to the topic, and 
sometimes with questions about it. Class begins with a short summary of, and 
reflection on, what was learned in the previous class, and students are asked if they 
have questions about the previous class or the assigned task. Students ask some 
questions that are answered by other students and/or the teacher. The teacher rarely 
answers a question directly but often asks students, “What do you think?,” and if 
another student gives an answer, the teacher asks, “Do you agree with this answer? 
Why?”

Now the class is ready to begin the first task. A question is given to the students 
such as “Do you think that female students spend more time on cell phones than 
male students?” Students form small groups to discuss these questions and sketch 
possible distributions and then share and compare their conjectures and reasoning 
with the class. The students move to computers and access a data set containing 
information that has previously been gathered about the students in the class using 
an online student survey. Working in pairs, students generate graphs and statistics to 
answer the questions on cell phone use. Students may discuss appropriate measures 
of center and spread for the data, revisiting those ideas from previous lessons. They 
may notice outliers in the data, and discussion may focus on how to find out if these 
are legitimate values or errors and on what happens to the graphs and statistics if 
those extreme values are removed?

The teacher’s role in the SRLE class is to present the problem, guide the discus-
sion, anticipate misconceptions or difficulties in reasoning, and make sure students 
are engaged on task and not experiencing difficulties. The teacher has to know when 
to end discussions, how to learn from mistakes, and how to provide a good summary 
for the task using the work students have done, so students can appreciate what they 
learned from the task. At the end of class, after the wrap-up discussion and sum-
mary, students may be asked to complete a brief assessment task, providing the 
teacher with feedback on their learning for that class.

The contrast between the SRLE and traditional instructional approaches is large, 
and it is apparent that even an eager and enthusiastic teacher who wants to move 
from a more traditional approach to a more SRLE approach is faced with many 
challenges. These challenges include students, colleagues, and institution, as well as 
challenges to the teacher’s own expectations. These challenges are examined and 
addressed in Garfield and Ben-Zvi (2008, pp. 57-63).

The SRLE model integrates many previous research results and is based on cur-
rent learning theories. It is hard to envision a way to empirically test it in its entirety 
since it is too complex and could translate differently in different courses and edu-
cational levels. Indeed, there is little empirical evidence as to what extent the entire 
SRLE improves students’ statistical reasoning and thinking (Baglin, 2013; Loveland, 
2014). Conway (2015) studied the impact of conformity to SRLE principles on 
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students’ statistical reasoning in advanced placement statistics courses5 in the 
USA. While the comparison between classrooms showing low and high conformity 
to SRLE principles revealed no statistically significant differences in students’ sta-
tistical reasoning ability, results from this study suggest that beliefs and practices 
aligned with SRLE principles show potential to increase students’ statistical reason-
ing at rates above national averages.

Several aspects of the SRLE were studied to assess learning outcomes. For 
example, both cognitive and affective/motivational factors were found associated 
with using real-life data to teach statistics in a first-year university statistics course 
(Neumann, Hood, & Neumann, 2013). Slootmaeckers, Kerremans, and Adriaensen 
(2014) used similar principles in the integration of quantitative material into non- 
methodological courses for political science students. Their results indicate that 
such an approach can not only foster interest in statistics but also retention of the 
acquired statistical skills.

16.5  Design Dimensions for Statistics Learning Environment

In this section, we identify design dimensions that arise from theoretical and empiri-
cal sources we have discussed and the three learning environment examples 
described in the previous section. These dimensions are not meant to serve as a 
prescription for what teachers and designers should do but rather to provide a wide 
spectrum of factors, or starting points, that need to be considered, aligned, and bal-
anced in designing statistics learning environments. The goal of designing effective 
and positive statistics learning environments is to support students to develop a deep 
and meaningful understanding of statistics and the ability to think and reason statis-
tically. In considering the design of such learning environments, we discuss and 
expand on six dimensions of pedagogical design proposed by Cobb and McClain 
(2004), highlighting what we see as the important connections between them 
(Fig. 16.2).

16.5.1  Focus on Developing Central Statistical Ideas Rather 
than on Tools and Procedures

There are several key statistical ideas that school and university students are 
expected to understand at a deep conceptual level (Burrill & Biehler, 2011; Garfield 
& Ben-Zvi, 2008). These ideas serve as overarching goals that direct teaching and 

5 Advanced placement is a US academic program with more than 30 courses in a wide variety of 
subject areas that provides secondary school students with the opportunity to study and learn at the 
college level.
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motivate and guide students’ learning. They include data, distribution, center, vari-
ability, comparing groups, sampling, modeling, inference, and covariation.

Garfield and Ben-Zvi (2008; see Example III above) advocate a focus on key 
statistical ideas and the interrelations among them and suggest ways to present these 
ideas throughout a course, revisiting them in different contexts, illustrating their 
multiple representations and interrelationships, and helping students recognize how 
they form the supporting structure of statistical knowledge.

Following the RME approach, one would aim for reinventing statistical ideas and 
allowing procedures and definitions to emerge in the process of coming to terms 
with a key idea. As exemplified earlier with the example of the process of reinvent-
ing the conception of distribution as a mathematical object, measures of central 
tendency may be developed as means to get a handle on distributions.

16.5.2  Use Well-Designed Tasks to Support the Development 
of Statistical Reasoning

An important part of a statistics learning environment is the use of carefully designed 
tasks, informed by research findings, that promote student learning through collabo-
ration, interaction, discussion, and addressing interesting problems (e.g., Roseth, 
Garfield, & Ben-Zvi, 2008). It may be argued that such tasks should be part of a 
well-considered instructional sequence, informed by the aim of developing central 
statistical ideas, which is underpinned by a local instruction theory. A local 

Fig. 16.2 A web of interrelated dimensions of a learning environment
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instruction theory typically consists of a theory about a potential learning process 
and theories about the means of supporting that learning process (Gravemeijer & 
Cobb, 2013). The former offers teachers background information, on the basis of 
which they may decide, on a daily basis, what learning goals to aim for, while the 
latter offer them information on how potential tasks, tools, ways of interacting, and 
the classroom culture may support the intended learning process. This information 
will help teachers in choosing tasks and tools, anticipating the mental activities of 
the students, orchestrating classroom interaction, and evaluating the implied hypo-
thetical learning trajectories.

Anticipating the notion of density, for instance, a step in the learning process, 
will concern the shift from measures represented as proportionally seized horizontal 
bars to measures represented by dots—where positions of the dots correspond with 
the end points of the bars (see Fig. 16.1a, b). The key here is to orient the students 
toward the end points of the bars and their position in respect to the horizontal axis. 
This asks for tasks in which the positions of the end points of the bars form a central 
issue. The battery life span task (Fig. 16.3) nicely fulfills this requirement (although 
the teacher may choose another task that can fulfill this function).

Designing high-quality tasks is demanding, not least because of some inherent 
tensions. One of these, which Ainley, Pratt, and Hansen (2006) call the “planning 
paradox,” is between engaging students’ interest by allowing freedom for them to 
develop their own ideas and ensuring that specific mathematical or statistical ideas 
are addressed. This is a tension between the design of appropriate tasks and the 
constraints of the institutional learning context.

Addressing this challenge, Ainley and Pratt (2014a) propose two linked princi-
ples for task design which are particularly appropriate in statistics education and 
potentially have wide application within the design of learning environments. The 
first is that tasks should have a clear purpose for the students within the context of 
the classroom. This might involve making a real or virtual object, such as a paper 
spinner or a model to generate data, or solving an intriguing problem. The purpose 
in this sense is not necessarily related to a real-world application: the purpose may 
arise within a fictional context, such as students advising on the movement of a new 
character in the “Angry Birds” computer game (Ainley & Pratt, 2014b). What is 
important is that the challenge of the task is engaging for students.

The second principle concerns the utility of statistical ideas, that is, the ways in 
which these ideas are useful. Engaging tasks should offer students opportunities to 
use statistical ideas in ways that enable them to see how and why they are powerful. 
For example, in modeling the movement of an “Angry Bird” which only moves 
horizontally (an “Angry Emu”), students can appreciate the need to express both 
signal and noise to describe the distance the Emu will travel relative to how far the 
sling is pulled back.
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16.5.3  Use Real, or Realistic, and Motivating Data Sets

The design of pedagogic tasks in statistics must take account of the data that will be 
centrally involved. Data are at the heart of statistical work, and data should be the 
focus for statistical learning as well (Franklin & Garfield, 2006). Throughout their 
experience of learning statistics, students need to consider methods of data collec-
tion and production and how these methods affect the quality of the data and the 
types of analyses that are appropriate. One approach can be to look for interesting 
data sets to motivate students to engage in activities, especially ones that ask them 
to make conjectures about a data set before analyzing it (Ben-Zvi & Aridor, 2016). 
Another approach would be to start with a question and then discuss what data 
would be needed to answer it. However, the provision of real or “realistic” data is 
not always sufficient to engage students in tasks that develop statistical reasoning 
unless the task poses meaningful challenges and provides opportunities to use sta-
tistical ideas in realistic ways.

Consider two kinds of activities using real data which are relatively familiar 
within statistics education research. The first is exploratory data analysis based on a 
source of real data, such as CensusAtSchool (Connor, 2002). Although data about 
students like themselves may have intrinsic interest, posing meaningful questions 
about the data can be challenging for school students (e.g., Burgess, 2007). Open- 
ended exploration of relationships in the data without a clear goal may not lead 
them to use statistical ideas in realistic ways. The second is a sampling task, such as 
repeatedly drawing small samples to estimate the proportion of sweets of a particu-
lar color within a bowl. Here, the statistical idea of sampling is being used in a 
realistic way, to answer a specific question, but the task itself is not a meaningful 
challenge (Ainley, Gould, & Pratt, 2015). If you really wanted to know the numbers 
of sweets of different colors, it would be quicker and more reliable to empty the 
bowl and count them. What these tasks have in common is that, although based on 
real data, they do not emphasize opportunities for students to appreciate the utility 
of statistical ideas. As a result, they may appear contrived and fail to engage and 
motivate students.

There is a further tension concerning the role and nature of data in statistics 
tasks. Students, particularly younger students, need to experience collecting, record-
ing, and cleaning their own data in order to develop their understandings of different 
forms of representation (e.g., Neumann et al., 2013). But data collection is time- 
consuming, often leaving relatively little time for analysis and discussion, and the 
features of the resulting data sets cannot be predicted. Providing real-world data sets 
(such as CensusAtSchool data, e.g., http://new.censusatschool.org.nz/), or devising 
data sets which are not authentic but embody the features that the teacher wants 
students to experience, will save time, but students may find such data sets harder to 
understand and engage with (Arnold, 2014).

In their teaching experiment on data analysis, Cobb et  al. (2003) used an 
approach, which offers a resolution to this tension. They asked seventh grade stu-
dents what data would be needed for a consumer report on batteries, providing an 

D. Ben-Zvi et al.

http://new.censusatschool.org.nz


493

overall purpose for the task. The students came up with the variable “life span” and 
figured out how data on life span would have to be gathered, in an activity which the 
authors describe as “talking through the process of data creation.” Subsequently, the 
students were offered life span data on two brands of batteries, which were not 
authentic but tailored to focus attention on statistical ideas involved in comparing 
two data sets, as part of instructional sequence. The data sets were constructed in 
such a way that one data set had a number of long-lasting batteries, while the other 
data set had a smaller spread. This allowed for a discussion of a small spread, for 
which the students invented the term “consistency” versus some high values. 
Students eventually linked this to the issue of what you would want to use the bat-
teries for.

16.5.4  Integrate the Use of Technological Tools that Allow 
Students to Explore and Analyze Data

The design of tasks (Watson & Ohtani, 2015) and the ways in which students may 
access and explore data are significantly influenced by the range of technological 
tools available to support the development of students’ understanding and reason-
ing, such as computers, graphing calculators, Internet, statistical software, and web 
applets (e.g., Biehler, 2003). Students no longer have to spend time performing 
tedious calculations, or drawing graphs, and can focus instead on the more impor-
tant task of learning how to choose appropriate analytic methods and how to inter-
pret results. Technological tools are used not only to generate statistics, graph data, 
or analyze data but also to help students visualize concepts and develop an under-
standing of abstract ideas through simulations. For examples of innovative tools and 
ways to use these tools to help develop students’ reasoning, see Ben-Zvi (2000); 
Chance, Ben-Zvi, Garfield, and Medina (2007); and Biehler, Ben-Zvi, Bakker, and 
Makar (2013).

A special category of technological tools is that of tools that are tailor made to 
instructional sequences, aiming to support “guided reinvention.” As an example, we 
may refer to the data analysis experiment of Gravemeijer and Cobb (2013) described 
above that aimed to develop students’ understanding of distribution as an object. 
Here an emergent modeling approach was applied in which the various sub-models 
instantiated the overarching idea of visualizing data sets. These visualizations were 
embedded in computer tools which enabled the students to structure the data in vari-
ous ways. When comparing two data sets on the life span of batteries, for instance, 
the students used the tool options to compare the values of the AlwaysReady batter-
ies with those of the Tough Cell batteries (Fig. 16.3).

Referring to the computer tool representation, they argued that they would prefer 
the “consistency” of the Tough Cell batteries over the many high values of the 
AlwaysReady batteries, when they needed a battery to really rely on; it would give 
you at least 80 h.

16 Design of Statistics Learning Environments
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16.5.5  Establish a Classroom Culture that Fosters Statistical 
Arguments

The design of tasks and technological and assessment tools has to take into account 
the expected forms of classroom discourse. In statistics learning environments, the 
use of activities and technology allows for a form of classroom discourse in which 
students learn to question each other and respond to such questions, as well as 
explaining their answers and arguments. Cobb and McClain (2004) describe the 
effective classroom discourse in which statistical arguments explain why the orga-
nization of data gives rise to insights about the phenomenon under investigation and 
students engage in sustained exchanges that focus on significant statistical ideas.

It can be challenging to create a statistics learning environment with classroom 
discourse that enables students to engage in discussions in which significant statisti-
cal issues emerge and where arguments are presented and their meaning is openly 
negotiated. Creating a classroom climate where students feel safe expressing their 
views, even if they are tentative, is another challenging task and is related to class-
room culture, in which the teacher and students have to develop the corresponding 
classroom social norms and socio-mathematical (or socio-statistical) norms (Yackel 
& Cobb, 1996). These norms encompass the obligation for the students to explain 
and justify their solutions, to try to understand the explanations and reasoning of the 
other students, to ask for clarification when needed, and eventually to challenge the 
ways of thinking with which they do not agree. The teacher is not expected to give 
explanations but to pose tasks and ask questions that may foster students’ thinking. 
Socio-statistical norms would be tailored to what it means to do statistics, for exam-
ple, what a statistical problem is, what a statistical argument is, and so forth.

As described in the three learning environment examples above, the shift in the 
classroom culture is related to a potential shift in the role of the students, from 
problem-solvers to statisticians who analyze and represent data to make them easily 
accessible for decision makers. When adopting the role of a data analyst, or data 
detective (Pfannkuch & Rubick, 2002), students can start reflecting on the adequacy 
and clarity of condensed descriptions and representations of data, which may foster 
the reinvention of more sophisticated representations and concepts.

16.5.6  Use Assessment to Monitor the Development 
of Students’ Statistical Learning and to Evaluate 
Instructional Plans

Assessment should be aligned to well-designed tasks that focus on central statistical 
ideas in a discourse-rich classroom. Much of the value of changes in the other 
design dimensions will be lost if assessment practices are not aligned in this way, 
since the attention of students and teachers will be shaped by the requirements of 
assessment. In recent years, many alternative forms of assessment have been used 
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in statistics classes. In addition to quizzes, homework, and exams, many teachers 
use statistical projects as a form of assessment (MacGillivray & Pereira-Mendoza, 
2011). Other forms of alternative assessment are also used to assess students’ statis-
tical literacy (e.g., critique a graph in a newspaper) and reasoning (e.g., write a 
meaningful short essay) or to provide feedback to the teacher (e.g., minute papers) 
(Bidgood, Hunt, & Jolliffe, 2010; Franklin & Garfield, 2006; Gal & Garfield, 1997).

Assessments need to be aligned with learning goals, focusing on understanding 
key ideas and not just on skills, procedures, and computed answers. This can be 
done with formative assessments used during a course (e.g., quizzes, small projects, 
or observing and listening to students in class) as well as with summative evalua-
tions (course grades). Useful and timely feedback is essential for assessments to 
lead to learning. Types of assessment may be more or less practical in different 
types of courses. However, it is possible, even in large classes, to implement good 
assessment practices (Garfield & Ben-Zvi, 2008, pp. 65–89).

16.6  Discussion: Contemporary Issues and Emerging 
Directions

The goal of this chapter has been to draw attention to the need to think about learn-
ing environments and their design in statistics education as a way of considering 
how sustainable change in the learning and teaching of statistics can be supported. 
It is not to advocate one particular approach to the design of learning environments, 
but rather to raise awareness to the need to consider this lens in statistics education 
research and practice. We have provided several examples of statistics learning 
environments that were informed by the social constructivist and the realistic math-
ematics education theories. Drawing on these examples and theories, we have dis-
cussed six dimensions of statistics learning environments.

Designing for educational change to support the development of students’ statis-
tical reasoning is a challenging task. Using a lever to make a one-dimensional 
change (e.g., formulate new tasks, the use of a new pedagogical strategy) may make 
a difference that is not necessarily a sustainable change in students’ understanding 
of statistical ideas. This chapter has argued for a holistic and integrated approach 
that advocates a learning environment where students are engaged in making and 
testing conjectures using data, discussing and explaining statistical reasoning, 
focusing on the important big ideas of statistics, using innovative tools in creative 
ways to assist their learning, and being assessed in appropriate ways.

We have discussed how the design of a statistics learning environment might take 
into consideration the following interrelated dimensions: a focus on central statisti-
cal ideas, the use of real or realistic data sets, well-designed tasks, integration of the 
use of appropriate technological tools, promoting classroom culture that nurtures 
discourse and socio-statistical norms, and the use of appropriate assessment meth-
ods (Cobb & McClain, 2004).

A key factor in this discussion is that these dimensions, which are interrelated 
(see Fig. 16.2), must be aligned and balanced. Issues of alignment are important for 
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accelerating statistics learning both within and outside of schools. The meaning of 
these design principles being part of integrative whole is that using one of them 
separately is not enough to make deep and sustainable change in students’ learning. 
The learning environment approach helps to interlink them. For example, the design 
of motivating tasks is linked to real data collection; these data can be used to build 
students’ statistical understanding taking advantages of the innovative affordances 
of technological tools; productive classroom discourse is supported by the design of 
open-ended tasks that support argumentation and by appropriate responses by the 
teacher (Makar, Bakker, & Ben-Zvi, 2015); assessment methods need to align with 
the design of tasks; a provision of a new tool must consider the potential interactions 
with content and pedagogy (Moore, 1997).

Thus we argue that pedagogical and research efforts for change must consider 
the interactions among these dimensions. There are however other important dimen-
sions of learning environments that were not included in this chapter. One example 
is the emotional aspects of engagement and identity to motivate all students to par-
ticipate and reflect on their experiences (Heyd-Metzuyanim, 2013).

Learning environments should become part of the statistics education commu-
nity discussion. Rather than the limited current focus on a specific tool or a set of 
innovative tasks, we hope to see more studies that report on integrated learning 
environments in statistics. The challenge is manifold. Planning a learning environ-
ment study is more complicated than a single-factor experiment, there are possibly 
greater tensions with local and national institutional constraints, and the design of 
assessment has to take into account multiple dimensions and use mixed methods.

If taken seriously, there are contemporary issues and future directions in this area 
of statistics learning environments. First, further research is crucially needed to pro-
vide more well-researched holistic examples in different contexts and age levels. 
Systematic studies are also needed about the effectiveness of statistics learning 
environments, learning environment design issues, the role of alignment between 
the various dimensions of statistics learning environments, new possibilities for 
teaching and learning in innovative designs, and opportunities in cutting-edge areas, 
such as model-based reasoning, visual representation to teach complex abstract 
concepts, learning in virtual worlds, net-based collaborative teams and communi-
ties, and big data (see Chaps. 1, 13, and 15 this volume).

The difficulty of demonstrating the effectiveness of the approach in Example III 
above raises profound methodological issues in researching learning environments. 
A traditional approach to research is one in which most variables are controlled as 
far as possible and the focus is on the unidimensional variable in question. The 
learning environment approach acknowledges a complex system or ecology in 
which such a methodology is not sustainable. Instead, a design research approach 
(Cobb et al., 2003; Gravemeijer & Cobb, 2013) is needed, where iterative design of 
the learning environment sensitizes the research team to the key mechanisms for 
learning within the design. Note, however, that in design research also, empirical 
data on what students gain from participating in the learning environment is indis-
pensable. We recommend that more attention be given to methodological aspects of 
researching the design of learning environments.
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Secondly, due to the proliferation of learning in online settings, there is an 
increase of designs for online learning communities such as MOOCs and virtual 
environments (e.g., Pratt, Griffiths, Jennings, & Schmoller, 2016; Wild, 2007). 
There is therefore a need to study designs for learning environments of the future 
(Jacobson & Reimann, 2010). We argue that taking a learning environment perspec-
tive can advance our understanding of the online learning arenas.

First steps in moving toward the learning environment perspective in the statis-
tics education community are for researchers to consider the implications of this 
approach in their studies and for professional development to support teachers to 
consider how current curricula and materials align in the context of social, cultural, 
physical, psychological, and pedagogical components of a learning environment. 
Careful and steady change over a period of time, rather than a push for radical 
change, may lead to a successful implementation of a learning environment in the 
statistics education world, both among researchers and teachers.
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